通过 MOCVD 同源外延技术提高脉冲掺杂 Sn (-201) β-Ga2O3 薄膜的电气性能

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yao Wang , Jiale Li , Wenkai Wu , Wenji Li , Qian Feng , Yachao Zhang , Jincheng Zhang , Yue Hao
{"title":"通过 MOCVD 同源外延技术提高脉冲掺杂 Sn (-201) β-Ga2O3 薄膜的电气性能","authors":"Yao Wang ,&nbsp;Jiale Li ,&nbsp;Wenkai Wu ,&nbsp;Wenji Li ,&nbsp;Qian Feng ,&nbsp;Yachao Zhang ,&nbsp;Jincheng Zhang ,&nbsp;Yue Hao","doi":"10.1016/j.surfin.2024.105056","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsed Sn doping (PSD) homoepitaxial gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) films were deposited on (-201) β-Ga<sub>2</sub>O<sub>3</sub> substrates using metal-organic chemical vapor deposition (MOCVD). The study aims to optimize Sn doping conditions to enhance the electrical properties of β-Ga<sub>2</sub>O<sub>3</sub> films. The influence of Sn pulse width (ranging from 0.1 min to 0.3 min) on the morphology, structure, and electrical properties of the film was investigated. The Full Width at Half Maximum (FWHM) of the (-201) crystal plane rocking curve for all doped films is &lt;50 arcsec, indicating high crystal quality. At a Sn pulse width of 0.2 min, we achieve the optimal balance between doping efficiency and crystal quality, resulting in a resistivity of 0.0487 Ω·cm, an electron mobility of 63.5 cm<sup>2</sup>/V·s, and a carrier concentration of 1.82 × 10<sup>18</sup> cm<sup>-3</sup>. Compared to continuous Sn doping, PSD results in approximately 157 % increase in carrier concentration and 99 % increase in electron mobility. The application of PSD allows sufficient diffusion time for Sn atoms to effectively incorporate into the film, signifying a crucial advancement in enhancing the film's electrical properties and reducing the cost of the metal organic doping source.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced electrical properties of pulsed Sn-doped (-201) β-Ga2O3 thin films via MOCVD homoepitaxy\",\"authors\":\"Yao Wang ,&nbsp;Jiale Li ,&nbsp;Wenkai Wu ,&nbsp;Wenji Li ,&nbsp;Qian Feng ,&nbsp;Yachao Zhang ,&nbsp;Jincheng Zhang ,&nbsp;Yue Hao\",\"doi\":\"10.1016/j.surfin.2024.105056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pulsed Sn doping (PSD) homoepitaxial gallium oxide (Ga<sub>2</sub>O<sub>3</sub>) films were deposited on (-201) β-Ga<sub>2</sub>O<sub>3</sub> substrates using metal-organic chemical vapor deposition (MOCVD). The study aims to optimize Sn doping conditions to enhance the electrical properties of β-Ga<sub>2</sub>O<sub>3</sub> films. The influence of Sn pulse width (ranging from 0.1 min to 0.3 min) on the morphology, structure, and electrical properties of the film was investigated. The Full Width at Half Maximum (FWHM) of the (-201) crystal plane rocking curve for all doped films is &lt;50 arcsec, indicating high crystal quality. At a Sn pulse width of 0.2 min, we achieve the optimal balance between doping efficiency and crystal quality, resulting in a resistivity of 0.0487 Ω·cm, an electron mobility of 63.5 cm<sup>2</sup>/V·s, and a carrier concentration of 1.82 × 10<sup>18</sup> cm<sup>-3</sup>. Compared to continuous Sn doping, PSD results in approximately 157 % increase in carrier concentration and 99 % increase in electron mobility. The application of PSD allows sufficient diffusion time for Sn atoms to effectively incorporate into the film, signifying a crucial advancement in enhancing the film's electrical properties and reducing the cost of the metal organic doping source.</p></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024012124\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012124","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用金属有机化学气相沉积(MOCVD)技术在 (-201) β-Ga2O3 基底上沉积了脉冲锡掺杂(PSD)同位氧化镓(Ga2O3)薄膜。该研究旨在优化 Sn 掺杂条件,以提高 β-Ga2O3 薄膜的电学特性。研究考察了锡脉冲宽度(从 0.1 分钟到 0.3 分钟不等)对薄膜形貌、结构和电性能的影响。所有掺杂薄膜的(-201)晶面摇摆曲线的半最大全宽(FWHM)均为 50 弧秒,表明晶体质量很高。在 Sn 脉冲宽度为 0.2 分钟时,我们实现了掺杂效率和晶体质量之间的最佳平衡,使电阻率达到 0.0487 Ω-cm,电子迁移率达到 63.5 cm2/V-s,载流子浓度达到 1.82 × 1018 cm-3。与连续掺入锡相比,PSD 使载流子浓度提高了约 157%,电子迁移率提高了 99%。PSD 的应用为锡原子有效融入薄膜提供了充足的扩散时间,这标志着在增强薄膜电学特性和降低金属有机掺杂源成本方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced electrical properties of pulsed Sn-doped (-201) β-Ga2O3 thin films via MOCVD homoepitaxy

Enhanced electrical properties of pulsed Sn-doped (-201) β-Ga2O3 thin films via MOCVD homoepitaxy

Pulsed Sn doping (PSD) homoepitaxial gallium oxide (Ga2O3) films were deposited on (-201) β-Ga2O3 substrates using metal-organic chemical vapor deposition (MOCVD). The study aims to optimize Sn doping conditions to enhance the electrical properties of β-Ga2O3 films. The influence of Sn pulse width (ranging from 0.1 min to 0.3 min) on the morphology, structure, and electrical properties of the film was investigated. The Full Width at Half Maximum (FWHM) of the (-201) crystal plane rocking curve for all doped films is <50 arcsec, indicating high crystal quality. At a Sn pulse width of 0.2 min, we achieve the optimal balance between doping efficiency and crystal quality, resulting in a resistivity of 0.0487 Ω·cm, an electron mobility of 63.5 cm2/V·s, and a carrier concentration of 1.82 × 1018 cm-3. Compared to continuous Sn doping, PSD results in approximately 157 % increase in carrier concentration and 99 % increase in electron mobility. The application of PSD allows sufficient diffusion time for Sn atoms to effectively incorporate into the film, signifying a crucial advancement in enhancing the film's electrical properties and reducing the cost of the metal organic doping source.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信