通过串联重复随机损失和逆串联重复随机损失对有符号排列进行排序

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Bruno J. Schmidt , Tom Hartmann , Peter F. Stadler
{"title":"通过串联重复随机损失和逆串联重复随机损失对有符号排列进行排序","authors":"Bruno J. Schmidt ,&nbsp;Tom Hartmann ,&nbsp;Peter F. Stadler","doi":"10.1016/j.aam.2024.102757","DOIUrl":null,"url":null,"abstract":"<div><p>Tandem duplication random loss (TDRL) and inverse tandem duplication random loss (iTDRL) are mechanisms of mitochondrial genome rearrangement that can be modeled as simple operations on signed permutations. Informally, they comprise the duplication of a subsequence of a permutation, where in the case of iTDRL the copy is inserted with inverted order and signs. In the second step, one copy of each duplicate element is removed, such that the result is again a signed permutation. The TDRL/iTDRL sorting problem consists in finding the minimal number of TDRL or iTDRL operations necessary to convert the identity permutation <em>ι</em> into a given permutation <em>π</em>. We introduce a simple signature, called the misc-encoding, of permutation <em>π</em>. This construction is used to design an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> algorithm to solve the TDRL/iTDRL sorting problem.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824000897/pdfft?md5=8c4e38f63eb26de0ae762cdd3ebe2a78&pid=1-s2.0-S0196885824000897-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sorting signed permutations by tandem duplication random loss and inverse tandem duplication random loss\",\"authors\":\"Bruno J. Schmidt ,&nbsp;Tom Hartmann ,&nbsp;Peter F. Stadler\",\"doi\":\"10.1016/j.aam.2024.102757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tandem duplication random loss (TDRL) and inverse tandem duplication random loss (iTDRL) are mechanisms of mitochondrial genome rearrangement that can be modeled as simple operations on signed permutations. Informally, they comprise the duplication of a subsequence of a permutation, where in the case of iTDRL the copy is inserted with inverted order and signs. In the second step, one copy of each duplicate element is removed, such that the result is again a signed permutation. The TDRL/iTDRL sorting problem consists in finding the minimal number of TDRL or iTDRL operations necessary to convert the identity permutation <em>ι</em> into a given permutation <em>π</em>. We introduce a simple signature, called the misc-encoding, of permutation <em>π</em>. This construction is used to design an <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> algorithm to solve the TDRL/iTDRL sorting problem.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000897/pdfft?md5=8c4e38f63eb26de0ae762cdd3ebe2a78&pid=1-s2.0-S0196885824000897-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

串联重复随机丢失(TDRL)和反串联重复随机丢失(iTDRL)是线粒体基因组重排的机制,可模拟为对有符号排列的简单操作。非正式地讲,它们包括对一个排列的子序列进行复制,在 iTDRL 的情况下,复制的序列和符号是倒置的。第二步,删除每个重复元素的一个副本,这样得到的结果又是一个带符号的排列。TDRL/iTDRL 排序问题包括找到将标识排列 ι 转换为给定排列 π 所需的最少 TDRL 或 iTDRL 操作次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sorting signed permutations by tandem duplication random loss and inverse tandem duplication random loss

Tandem duplication random loss (TDRL) and inverse tandem duplication random loss (iTDRL) are mechanisms of mitochondrial genome rearrangement that can be modeled as simple operations on signed permutations. Informally, they comprise the duplication of a subsequence of a permutation, where in the case of iTDRL the copy is inserted with inverted order and signs. In the second step, one copy of each duplicate element is removed, such that the result is again a signed permutation. The TDRL/iTDRL sorting problem consists in finding the minimal number of TDRL or iTDRL operations necessary to convert the identity permutation ι into a given permutation π. We introduce a simple signature, called the misc-encoding, of permutation π. This construction is used to design an O(nlogn) algorithm to solve the TDRL/iTDRL sorting problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信