一些多变量多项式的经典续分,推广 Genocchi 数和 Genocchi 中值数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Bishal Deb , Alan D. Sokal
{"title":"一些多变量多项式的经典续分,推广 Genocchi 数和 Genocchi 中值数","authors":"Bishal Deb ,&nbsp;Alan D. Sokal","doi":"10.1016/j.aam.2024.102756","DOIUrl":null,"url":null,"abstract":"<div><p>A D-permutation is a permutation of <span><math><mo>[</mo><mn>2</mn><mi>n</mi><mo>]</mo></math></span> satisfying <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>≤</mo><mi>σ</mi><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mn>2</mn><mi>k</mi><mo>≥</mo><mi>σ</mi><mo>(</mo><mn>2</mn><mi>k</mi><mo>)</mo></math></span> for all <em>k</em>; they provide a combinatorial model for the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0196885824000885/pdfft?md5=3810ddd45e6b3ed90210b39501d14be8&pid=1-s2.0-S0196885824000885-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers\",\"authors\":\"Bishal Deb ,&nbsp;Alan D. Sokal\",\"doi\":\"10.1016/j.aam.2024.102756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A D-permutation is a permutation of <span><math><mo>[</mo><mn>2</mn><mi>n</mi><mo>]</mo></math></span> satisfying <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>≤</mo><mi>σ</mi><mo>(</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mn>2</mn><mi>k</mi><mo>≥</mo><mi>σ</mi><mo>(</mo><mn>2</mn><mi>k</mi><mo>)</mo></math></span> for all <em>k</em>; they provide a combinatorial model for the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000885/pdfft?md5=3810ddd45e6b3ed90210b39501d14be8&pid=1-s2.0-S0196885824000885-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885824000885\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885824000885","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

D-permutation 是 [2n] 的一种置换,对于所有 k 均满足 2k-1≤σ(2k-1)和 2k≥σ(2k);它们为 Genocchi 数和中位 Genocchi 数提供了一种组合模型。我们为一些多变量多项式找到了斯蒂尔杰斯型和瑟隆型续分数,这些多变量多项式枚举了与大量(有时是无限量)同时测量循环状态、记录状态、交叉和嵌套的统计量有关的 D 型迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers

A D-permutation is a permutation of [2n] satisfying 2k1σ(2k1) and 2kσ(2k) for all k; they provide a combinatorial model for the Genocchi and median Genocchi numbers. We find Stieltjes-type and Thron-type continued fractions for some multivariate polynomials that enumerate D-permutations with respect to a very large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信