{"title":"利用基于脉冲的振动频率,以数据为导向预测连续焊接钢轨的中性温度","authors":"Chi-Luen Huang, Sangmin Lee, John S. Popovics","doi":"10.1016/j.ndteint.2024.103229","DOIUrl":null,"url":null,"abstract":"<div><p>Continuously welded rails (CWR) are prone to the development of high thermal-induced load along the axial direction. Excessive levels of load lead to risk of rail buckling and potential for derailment. Knowledge of the <em>in situ</em> rail axial load in CWRs is therefore important to ensure safe rail management. Field-deployable, nondestructive evaluation techniques for measuring the rail load, or a widely adopted alternative called rail neutral temperature (RNT), are desired. This study uses a data-driven approach to investigate if rail dynamic response data, collected in a non-destructive fashion, can be used to predict RNT. The study is based on a data set comprising rail equivalent strain, temperature and vibration resonance frequencies that was collected from a revenue-service rail over a period of nearly two years. All excited vibration resonance peaks are identified from other peaks caused by noise using spectral amplitude variance. Among these resonance peaks, potentially useful resonances are identified with respect to stacked spectra collected across a testing day using an assumed temperature-frequency relation. A subset of the identified useful resonances is then identified based on their consistent appearance across both testing locations and all testing days, strong correlation to effective strain, and strong correlation to each other. Three particular vibration resonances (or vibration modes -- these terms will be used interchangeably throughout this paper unless specified otherwise. The term mode does not necessarily indicate mode shapes or mode families.) emerge from this process as best candidates. A classic feature selection technique, Lasso linear regression, is then employed to identify critical power combinations of the three resonant mode frequencies. Two power combinations exhibit unique correlation to the measured equivalent axial strain at both test locations across all testing days, and thus show particular ability to predict RNT. The RNT is predicted at one test location using different models based on the power combination data from the other location, and <em>vice versa</em>, where the predictions satisfy standard RNT measurement accuracy expectations.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103229"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven prediction of rail neutral temperature for continuously welded rails using impulse-based vibration frequencies\",\"authors\":\"Chi-Luen Huang, Sangmin Lee, John S. Popovics\",\"doi\":\"10.1016/j.ndteint.2024.103229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Continuously welded rails (CWR) are prone to the development of high thermal-induced load along the axial direction. Excessive levels of load lead to risk of rail buckling and potential for derailment. Knowledge of the <em>in situ</em> rail axial load in CWRs is therefore important to ensure safe rail management. Field-deployable, nondestructive evaluation techniques for measuring the rail load, or a widely adopted alternative called rail neutral temperature (RNT), are desired. This study uses a data-driven approach to investigate if rail dynamic response data, collected in a non-destructive fashion, can be used to predict RNT. The study is based on a data set comprising rail equivalent strain, temperature and vibration resonance frequencies that was collected from a revenue-service rail over a period of nearly two years. All excited vibration resonance peaks are identified from other peaks caused by noise using spectral amplitude variance. Among these resonance peaks, potentially useful resonances are identified with respect to stacked spectra collected across a testing day using an assumed temperature-frequency relation. A subset of the identified useful resonances is then identified based on their consistent appearance across both testing locations and all testing days, strong correlation to effective strain, and strong correlation to each other. Three particular vibration resonances (or vibration modes -- these terms will be used interchangeably throughout this paper unless specified otherwise. The term mode does not necessarily indicate mode shapes or mode families.) emerge from this process as best candidates. A classic feature selection technique, Lasso linear regression, is then employed to identify critical power combinations of the three resonant mode frequencies. Two power combinations exhibit unique correlation to the measured equivalent axial strain at both test locations across all testing days, and thus show particular ability to predict RNT. The RNT is predicted at one test location using different models based on the power combination data from the other location, and <em>vice versa</em>, where the predictions satisfy standard RNT measurement accuracy expectations.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103229\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001944\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001944","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Data-driven prediction of rail neutral temperature for continuously welded rails using impulse-based vibration frequencies
Continuously welded rails (CWR) are prone to the development of high thermal-induced load along the axial direction. Excessive levels of load lead to risk of rail buckling and potential for derailment. Knowledge of the in situ rail axial load in CWRs is therefore important to ensure safe rail management. Field-deployable, nondestructive evaluation techniques for measuring the rail load, or a widely adopted alternative called rail neutral temperature (RNT), are desired. This study uses a data-driven approach to investigate if rail dynamic response data, collected in a non-destructive fashion, can be used to predict RNT. The study is based on a data set comprising rail equivalent strain, temperature and vibration resonance frequencies that was collected from a revenue-service rail over a period of nearly two years. All excited vibration resonance peaks are identified from other peaks caused by noise using spectral amplitude variance. Among these resonance peaks, potentially useful resonances are identified with respect to stacked spectra collected across a testing day using an assumed temperature-frequency relation. A subset of the identified useful resonances is then identified based on their consistent appearance across both testing locations and all testing days, strong correlation to effective strain, and strong correlation to each other. Three particular vibration resonances (or vibration modes -- these terms will be used interchangeably throughout this paper unless specified otherwise. The term mode does not necessarily indicate mode shapes or mode families.) emerge from this process as best candidates. A classic feature selection technique, Lasso linear regression, is then employed to identify critical power combinations of the three resonant mode frequencies. Two power combinations exhibit unique correlation to the measured equivalent axial strain at both test locations across all testing days, and thus show particular ability to predict RNT. The RNT is predicted at one test location using different models based on the power combination data from the other location, and vice versa, where the predictions satisfy standard RNT measurement accuracy expectations.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.