{"title":"线性和多线性伪微分算子的尖锐最大函数估计值","authors":"Bae Jun Park , Naohito Tomita","doi":"10.1016/j.jfa.2024.110661","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González <span><span>[16]</span></span>, which provides more elaborate and natural weighted estimates in the multilinear setting.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp maximal function estimates for linear and multilinear pseudo-differential operators\",\"authors\":\"Bae Jun Park , Naohito Tomita\",\"doi\":\"10.1016/j.jfa.2024.110661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González <span><span>[16]</span></span>, which provides more elaborate and natural weighted estimates in the multilinear setting.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003495\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sharp maximal function estimates for linear and multilinear pseudo-differential operators
In this paper, we study pointwise estimates for linear and multilinear pseudo-differential operators with exotic symbols in terms of the Fefferman-Stein sharp maximal function and Hardy-Littlewood type maximal function. Especially in the multilinear case, we use a multi-sublinear variant of the classical Hardy-Littlewood maximal function introduced by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [16], which provides more elaborate and natural weighted estimates in the multilinear setting.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis