关于环上完全共振 NLS 解的寿命和高索波列夫规范的控制

IF 1.7 2区 数学 Q1 MATHEMATICS
Roberto Feola , Jessica Elisa Massetti
{"title":"关于环上完全共振 NLS 解的寿命和高索波列夫规范的控制","authors":"Roberto Feola ,&nbsp;Jessica Elisa Massetti","doi":"10.1016/j.jfa.2024.110648","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a completely resonant nonlinear Schrödinger equation on the <em>d</em>-dimensional torus, for any <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, with polynomial nonlinearity of any degree <span><math><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, which is gauge and translation invariant. We study the behaviour of <em>high</em> Sobolev <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norms of solutions, <span><math><mi>s</mi><mo>≥</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>&gt;</mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>2</mn></math></span>, whose initial datum <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> satisfies an appropriate smallness condition on its <em>low</em> <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over finite but long time scale that is exponential in the regularity parameter <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. As a byproduct we get stability of the low <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>-norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"287 12","pages":"Article 110648"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003367/pdfft?md5=96a57ec86be28722eb2014aec51b0e62&pid=1-s2.0-S0022123624003367-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the lifespan of solutions and control of high Sobolev norms for the completely resonant NLS on tori\",\"authors\":\"Roberto Feola ,&nbsp;Jessica Elisa Massetti\",\"doi\":\"10.1016/j.jfa.2024.110648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a completely resonant nonlinear Schrödinger equation on the <em>d</em>-dimensional torus, for any <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, with polynomial nonlinearity of any degree <span><math><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, which is gauge and translation invariant. We study the behaviour of <em>high</em> Sobolev <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norms of solutions, <span><math><mi>s</mi><mo>≥</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>&gt;</mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>2</mn></math></span>, whose initial datum <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> satisfies an appropriate smallness condition on its <em>low</em> <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over finite but long time scale that is exponential in the regularity parameter <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. As a byproduct we get stability of the low <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>-norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"287 12\",\"pages\":\"Article 110648\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003367/pdfft?md5=96a57ec86be28722eb2014aec51b0e62&pid=1-s2.0-S0022123624003367-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003367\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003367","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个 d 维环面上的完全共振非线性薛定谔方程,对于任意 d≥1,其多项式非线性度为任意度 2p+1,p≥1,且具有规整和平移不变性。我们研究了解的高 Sobolev Hs-norms 的行为,s≥s1+1>d/2+2,其初始原点 u0∈Hs 分别满足其低 Hs1 和 L2-norms 的适当小度条件。我们证明了在有限但较长的时间尺度上,Sobolev 准则 Hs 的可能增长的多项式上界,它与正则参数 s1 成指数关系。作为副产品,我们得到了低 Hs1 准则在这种时间间隔内的稳定性。证明中的一个关键要素是引入一个合适的 "修正能量",为增长提供一个先验上限。这可以通过结合准微分技术和适当的驯服估计来获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the lifespan of solutions and control of high Sobolev norms for the completely resonant NLS on tori

We consider a completely resonant nonlinear Schrödinger equation on the d-dimensional torus, for any d1, with polynomial nonlinearity of any degree 2p+1, p1, which is gauge and translation invariant. We study the behaviour of high Sobolev Hs-norms of solutions, ss1+1>d/2+2, whose initial datum u0Hs satisfies an appropriate smallness condition on its low Hs1 and L2-norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm Hs over finite but long time scale that is exponential in the regularity parameter s1. As a byproduct we get stability of the low Hs1-norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信