{"title":"关于环上完全共振 NLS 解的寿命和高索波列夫规范的控制","authors":"Roberto Feola , Jessica Elisa Massetti","doi":"10.1016/j.jfa.2024.110648","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a completely resonant nonlinear Schrödinger equation on the <em>d</em>-dimensional torus, for any <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, with polynomial nonlinearity of any degree <span><math><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, which is gauge and translation invariant. We study the behaviour of <em>high</em> Sobolev <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norms of solutions, <span><math><mi>s</mi><mo>≥</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>></mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>2</mn></math></span>, whose initial datum <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> satisfies an appropriate smallness condition on its <em>low</em> <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over finite but long time scale that is exponential in the regularity parameter <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. As a byproduct we get stability of the low <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>-norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022123624003367/pdfft?md5=96a57ec86be28722eb2014aec51b0e62&pid=1-s2.0-S0022123624003367-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the lifespan of solutions and control of high Sobolev norms for the completely resonant NLS on tori\",\"authors\":\"Roberto Feola , Jessica Elisa Massetti\",\"doi\":\"10.1016/j.jfa.2024.110648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a completely resonant nonlinear Schrödinger equation on the <em>d</em>-dimensional torus, for any <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>, with polynomial nonlinearity of any degree <span><math><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>, which is gauge and translation invariant. We study the behaviour of <em>high</em> Sobolev <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norms of solutions, <span><math><mi>s</mi><mo>≥</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn><mo>></mo><mi>d</mi><mo>/</mo><mn>2</mn><mo>+</mo><mn>2</mn></math></span>, whose initial datum <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> satisfies an appropriate smallness condition on its <em>low</em> <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> over finite but long time scale that is exponential in the regularity parameter <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. As a byproduct we get stability of the low <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>-norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003367/pdfft?md5=96a57ec86be28722eb2014aec51b0e62&pid=1-s2.0-S0022123624003367-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003367\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003367","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the lifespan of solutions and control of high Sobolev norms for the completely resonant NLS on tori
We consider a completely resonant nonlinear Schrödinger equation on the d-dimensional torus, for any , with polynomial nonlinearity of any degree , , which is gauge and translation invariant. We study the behaviour of high Sobolev -norms of solutions, , whose initial datum satisfies an appropriate smallness condition on its low and -norms respectively. We prove a polynomial upper bound on the possible growth of the Sobolev norm over finite but long time scale that is exponential in the regularity parameter . As a byproduct we get stability of the low -norm over such time interval. A key ingredient in the proof is the introduction of a suitable “modified energy” that provides an a priori upper bound on the growth. This is obtained by combining para-differential techniques and suitable tame estimates.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis