多孔介质型反应扩散方程:自由边界的大时间行为和正则性

IF 1.7 2区 数学 Q1 MATHEMATICS
Qingyou He
{"title":"多孔介质型反应扩散方程:自由边界的大时间行为和正则性","authors":"Qingyou He","doi":"10.1016/j.jfa.2024.110643","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Cauchy problem of the porous medium type reaction-diffusion equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>ρ</mi><mi>g</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mspace></mspace><mi>m</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo></math></span></span></span> where <em>g</em> is the given monotonic decreasing function with the density critical threshold <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> satisfying <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We prove that the pressure <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> tends to the pressure critical threshold <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> at the time decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. If the initial density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> is compactly supported, we justify that the support <span><math><mo>{</mo><mi>x</mi><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> of the density <em>ρ</em> expands exponentially in time. Furthermore, we show that there exists a time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that the pressure <em>P</em> is Lipschitz continuous for <span><math><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which is the optimal (sharp) regularity of the pressure, and the free surface <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is a local <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> surface.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous medium type reaction-diffusion equation: Large time behaviors and regularity of free boundary\",\"authors\":\"Qingyou He\",\"doi\":\"10.1016/j.jfa.2024.110643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Cauchy problem of the porous medium type reaction-diffusion equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>ρ</mi><mi>g</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mspace></mspace><mi>m</mi><mo>&gt;</mo><mn>1</mn><mo>,</mo></math></span></span></span> where <em>g</em> is the given monotonic decreasing function with the density critical threshold <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> satisfying <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We prove that the pressure <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> tends to the pressure critical threshold <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> at the time decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. If the initial density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> is compactly supported, we justify that the support <span><math><mo>{</mo><mi>x</mi><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo></math></span> of the density <em>ρ</em> expands exponentially in time. Furthermore, we show that there exists a time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that the pressure <em>P</em> is Lipschitz continuous for <span><math><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which is the optimal (sharp) regularity of the pressure, and the free surface <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is a local <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> surface.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003318\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003318","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑多孔介质型反应扩散方程∂tρ=Δρm+ρg(ρ)的考奇问题,(x,t)∈Rn×R+,n≥2,m>1,其中g为给定的单调递减函数,密度临界阈值ρM>0满足g(ρM)=0。我们证明,Lloc∞(Rn) 中的压力 P:=mm-1ρm-1 以时间衰减率 (1+t)-1 趋向于压力临界阈值 PM:=mm-1(ρM)m-1。如果初始密度ρ(x,0)是紧凑支撑的,我们证明密度ρ的支撑{x:ρ(x,t)>0}随时间呈指数扩展。此外,我们证明存在一个时间 T0>0,使得压力 P 在 t>T0 时是 Lipschitz 连续的,这是压力的最优(锐利)正则性,并且自由表面 ∂{(x,t):ρ(x,t)>0}∩{t>T0} 是局部 Lipschitz 连续的。此外,在同样的紧凑支撑初始假设下,我们验证了自由边界∂{(x,t):ρ(x,t)>0}∩{t>T0}是局部 C1,α 曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Porous medium type reaction-diffusion equation: Large time behaviors and regularity of free boundary

We consider the Cauchy problem of the porous medium type reaction-diffusion equationtρ=Δρm+ρg(ρ),(x,t)Rn×R+,n2,m>1, where g is the given monotonic decreasing function with the density critical threshold ρM>0 satisfying g(ρM)=0. We prove that the pressure P:=mm1ρm1 in Lloc(Rn) tends to the pressure critical threshold PM:=mm1(ρM)m1 at the time decay rate (1+t)1. If the initial density ρ(x,0) is compactly supported, we justify that the support {x:ρ(x,t)>0} of the density ρ expands exponentially in time. Furthermore, we show that there exists a time T0>0 such that the pressure P is Lipschitz continuous for t>T0, which is the optimal (sharp) regularity of the pressure, and the free surface {(x,t):ρ(x,t)>0}{t>T0} is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary {(x,t):ρ(x,t)>0}{t>T0} is a local C1,α surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信