{"title":"多孔介质型反应扩散方程:自由边界的大时间行为和正则性","authors":"Qingyou He","doi":"10.1016/j.jfa.2024.110643","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Cauchy problem of the porous medium type reaction-diffusion equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>ρ</mi><mi>g</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mspace></mspace><mi>m</mi><mo>></mo><mn>1</mn><mo>,</mo></math></span></span></span> where <em>g</em> is the given monotonic decreasing function with the density critical threshold <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> satisfying <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We prove that the pressure <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> tends to the pressure critical threshold <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> at the time decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. If the initial density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> is compactly supported, we justify that the support <span><math><mo>{</mo><mi>x</mi><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo></math></span> of the density <em>ρ</em> expands exponentially in time. Furthermore, we show that there exists a time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that the pressure <em>P</em> is Lipschitz continuous for <span><math><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which is the optimal (sharp) regularity of the pressure, and the free surface <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is a local <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> surface.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porous medium type reaction-diffusion equation: Large time behaviors and regularity of free boundary\",\"authors\":\"Qingyou He\",\"doi\":\"10.1016/j.jfa.2024.110643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Cauchy problem of the porous medium type reaction-diffusion equation<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>ρ</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>ρ</mi><mi>g</mi><mo>(</mo><mi>ρ</mi><mo>)</mo><mo>,</mo><mspace></mspace><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>2</mn><mo>,</mo><mspace></mspace><mi>m</mi><mo>></mo><mn>1</mn><mo>,</mo></math></span></span></span> where <em>g</em> is the given monotonic decreasing function with the density critical threshold <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>></mo><mn>0</mn></math></span> satisfying <span><math><mi>g</mi><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. We prove that the pressure <span><math><mi>P</mi><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mi>ρ</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> tends to the pressure critical threshold <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msup><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> at the time decay rate <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. If the initial density <span><math><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></math></span> is compactly supported, we justify that the support <span><math><mo>{</mo><mi>x</mi><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo></math></span> of the density <em>ρ</em> expands exponentially in time. Furthermore, we show that there exists a time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> such that the pressure <em>P</em> is Lipschitz continuous for <span><math><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, which is the optimal (sharp) regularity of the pressure, and the free surface <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary <span><math><mo>∂</mo><mo>{</mo><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>ρ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo><mo>></mo><mn>0</mn><mo>}</mo><mo>∩</mo><mo>{</mo><mi>t</mi><mo>></mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></math></span> is a local <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> surface.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003318\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003318","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Porous medium type reaction-diffusion equation: Large time behaviors and regularity of free boundary
We consider the Cauchy problem of the porous medium type reaction-diffusion equation where g is the given monotonic decreasing function with the density critical threshold satisfying . We prove that the pressure in tends to the pressure critical threshold at the time decay rate . If the initial density is compactly supported, we justify that the support of the density ρ expands exponentially in time. Furthermore, we show that there exists a time such that the pressure P is Lipschitz continuous for , which is the optimal (sharp) regularity of the pressure, and the free surface is locally Lipschitz continuous. In addition, under the same initial assumptions of compact support, we verify that the free boundary is a local surface.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis