Unjin Pak , YongBom Son , Kwangho Kim , JangHak Kim , MyongJun Jang , KyongJin Kim , GumRyong Pak
{"title":"基于深度学习和适当时空相关性分析的新型颗粒物(PM2.5)预报方法","authors":"Unjin Pak , YongBom Son , Kwangho Kim , JangHak Kim , MyongJun Jang , KyongJin Kim , GumRyong Pak","doi":"10.1016/j.jastp.2024.106336","DOIUrl":null,"url":null,"abstract":"<div><p>Since air pollution caused by PM 2.5 (particulate matter with an aerodynamic diameter of ≤2.5 μm) is a serious threat to human health, the accurate forecasting of PM 2.5 concentration in metropolitan areas is one of the prior conditions to reduce and eliminate the harmful impacts on human beings produced by PM2.5. In this study, we analyzed the spatiotemporal correlations between target and observation parameters relevant to air pollution forecasting and proposed a convolutional neural network (CNN) and long short-term memory (LSTM) model (also called PM predictor) for next day's daily average PM 2.5 concentration forecasting in Beijing. The proposed spatiotemporal correlations were analyzed for efficient estimation of mutual information, not only if the degrees of variations between the two spaces under consideration are similar, but also if the degrees of variations are significantly different, thereby generating a spatiotemporal feature vector. CNN provided an efficient extraction of inherent features for latent air quality and meteorological input data relevant to PM 2.5, and LSTM delivered the historical information in the time series data, thus a novel PM predictor with remarkably improved performance was constructed, compared with multi-layer perceptron (MLP) and LSTM model in overall forecasting. The air quality and meteorological data from the monitoring stations in Beijing and four surrounding cities from January 1, 2015 to December 31, 2017 were adopted as dataset. The forecasting results suggest that the proposed PM predictor is superior to other models in overall forecasting, while LSTM is better than PM predictor with slight difference in seasonal forecasting.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"264 ","pages":"Article 106336"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel particulate matter (PM2.5) forecasting method based on deep learning with suitable spatiotemporal correlation analysis\",\"authors\":\"Unjin Pak , YongBom Son , Kwangho Kim , JangHak Kim , MyongJun Jang , KyongJin Kim , GumRyong Pak\",\"doi\":\"10.1016/j.jastp.2024.106336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since air pollution caused by PM 2.5 (particulate matter with an aerodynamic diameter of ≤2.5 μm) is a serious threat to human health, the accurate forecasting of PM 2.5 concentration in metropolitan areas is one of the prior conditions to reduce and eliminate the harmful impacts on human beings produced by PM2.5. In this study, we analyzed the spatiotemporal correlations between target and observation parameters relevant to air pollution forecasting and proposed a convolutional neural network (CNN) and long short-term memory (LSTM) model (also called PM predictor) for next day's daily average PM 2.5 concentration forecasting in Beijing. The proposed spatiotemporal correlations were analyzed for efficient estimation of mutual information, not only if the degrees of variations between the two spaces under consideration are similar, but also if the degrees of variations are significantly different, thereby generating a spatiotemporal feature vector. CNN provided an efficient extraction of inherent features for latent air quality and meteorological input data relevant to PM 2.5, and LSTM delivered the historical information in the time series data, thus a novel PM predictor with remarkably improved performance was constructed, compared with multi-layer perceptron (MLP) and LSTM model in overall forecasting. The air quality and meteorological data from the monitoring stations in Beijing and four surrounding cities from January 1, 2015 to December 31, 2017 were adopted as dataset. The forecasting results suggest that the proposed PM predictor is superior to other models in overall forecasting, while LSTM is better than PM predictor with slight difference in seasonal forecasting.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"264 \",\"pages\":\"Article 106336\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001640\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001640","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Novel particulate matter (PM2.5) forecasting method based on deep learning with suitable spatiotemporal correlation analysis
Since air pollution caused by PM 2.5 (particulate matter with an aerodynamic diameter of ≤2.5 μm) is a serious threat to human health, the accurate forecasting of PM 2.5 concentration in metropolitan areas is one of the prior conditions to reduce and eliminate the harmful impacts on human beings produced by PM2.5. In this study, we analyzed the spatiotemporal correlations between target and observation parameters relevant to air pollution forecasting and proposed a convolutional neural network (CNN) and long short-term memory (LSTM) model (also called PM predictor) for next day's daily average PM 2.5 concentration forecasting in Beijing. The proposed spatiotemporal correlations were analyzed for efficient estimation of mutual information, not only if the degrees of variations between the two spaces under consideration are similar, but also if the degrees of variations are significantly different, thereby generating a spatiotemporal feature vector. CNN provided an efficient extraction of inherent features for latent air quality and meteorological input data relevant to PM 2.5, and LSTM delivered the historical information in the time series data, thus a novel PM predictor with remarkably improved performance was constructed, compared with multi-layer perceptron (MLP) and LSTM model in overall forecasting. The air quality and meteorological data from the monitoring stations in Beijing and four surrounding cities from January 1, 2015 to December 31, 2017 were adopted as dataset. The forecasting results suggest that the proposed PM predictor is superior to other models in overall forecasting, while LSTM is better than PM predictor with slight difference in seasonal forecasting.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.