{"title":"我们能从多病症中学到什么?从风险模式到相应的患者概况的深入研究","authors":"Xiaochen Wang , Runtong Zhang , Xiaomin Zhu","doi":"10.1016/j.dss.2024.114313","DOIUrl":null,"url":null,"abstract":"<div><p>Multimorbidity, the presence of two or more chronic conditions within an individual, represents one of the most intricate challenges for global health systems. Traditional single-disease management often fails to address the multifaceted nature of multimorbidity. Network model emerges as a growing field for elucidating the interconnections among multimorbidity. However, the field lacks a standardized method to compute and visually represent of these networks. Given the challenges, this study proposes a three-stage methodology to decipher multimorbidity. First, we integrate the Failure Modes and Effects Analysis (FMEA) method with the multimorbidity encapsulation framework to develop the Multimorbidity Risk Network (MRN). Second, we use complex network techniques to identify high-risk patterns within MRN communities. Finally, we apply machine learning techniques to correlate these communities with the biological attributes of patients that have been marginalized in most studies. Our approach advocates a paradigm shift from the conventional focus on single diseases to a holistic, patient-centric approach, providing decision-makers with integrated information technology artifacts for deciphering the multimorbidity.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"186 ","pages":"Article 114313"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What can we learn from multimorbidity? A deep dive from its risk patterns to the corresponding patient profiles\",\"authors\":\"Xiaochen Wang , Runtong Zhang , Xiaomin Zhu\",\"doi\":\"10.1016/j.dss.2024.114313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multimorbidity, the presence of two or more chronic conditions within an individual, represents one of the most intricate challenges for global health systems. Traditional single-disease management often fails to address the multifaceted nature of multimorbidity. Network model emerges as a growing field for elucidating the interconnections among multimorbidity. However, the field lacks a standardized method to compute and visually represent of these networks. Given the challenges, this study proposes a three-stage methodology to decipher multimorbidity. First, we integrate the Failure Modes and Effects Analysis (FMEA) method with the multimorbidity encapsulation framework to develop the Multimorbidity Risk Network (MRN). Second, we use complex network techniques to identify high-risk patterns within MRN communities. Finally, we apply machine learning techniques to correlate these communities with the biological attributes of patients that have been marginalized in most studies. Our approach advocates a paradigm shift from the conventional focus on single diseases to a holistic, patient-centric approach, providing decision-makers with integrated information technology artifacts for deciphering the multimorbidity.</p></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"186 \",\"pages\":\"Article 114313\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624001465\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001465","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
What can we learn from multimorbidity? A deep dive from its risk patterns to the corresponding patient profiles
Multimorbidity, the presence of two or more chronic conditions within an individual, represents one of the most intricate challenges for global health systems. Traditional single-disease management often fails to address the multifaceted nature of multimorbidity. Network model emerges as a growing field for elucidating the interconnections among multimorbidity. However, the field lacks a standardized method to compute and visually represent of these networks. Given the challenges, this study proposes a three-stage methodology to decipher multimorbidity. First, we integrate the Failure Modes and Effects Analysis (FMEA) method with the multimorbidity encapsulation framework to develop the Multimorbidity Risk Network (MRN). Second, we use complex network techniques to identify high-risk patterns within MRN communities. Finally, we apply machine learning techniques to correlate these communities with the biological attributes of patients that have been marginalized in most studies. Our approach advocates a paradigm shift from the conventional focus on single diseases to a holistic, patient-centric approach, providing decision-makers with integrated information technology artifacts for deciphering the multimorbidity.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).