Motahareh Pourbehzadi , Giti Javidi , C. Jordan Howell , Eden Kamar , Ehsan Sheybani
{"title":"增强(网络)态势感知:使用可解释主成分分析(iPCA)自动进行漏洞严重性评分","authors":"Motahareh Pourbehzadi , Giti Javidi , C. Jordan Howell , Eden Kamar , Ehsan Sheybani","doi":"10.1016/j.dss.2024.114308","DOIUrl":null,"url":null,"abstract":"<div><p>The Common Vulnerability Scoring System (CVSS) is widely used in the cybersecurity industry to assess the severity of vulnerabilities. However, manual assessments and human error can lead to delays and inconsistencies. This study employs situational awareness theory to develop an automated decision support system, integrating perception, comprehension, and projection components to enhance effectiveness. Specifically, an interpretable principal component analysis (iPCA) combined with machine learning is utilized to forecast CVSS scores using text descriptions from the Common Vulnerabilities and Exposures (CVE) database. Different forecasting approaches, including traditional machine learning models, Long-Short Term Memory Neural Networks, and Transformer architectures (ChatGPT) are compared to determine the best performance. The results show that iPCA combined with support vector regression achieves a high performance (R<sup>2</sup> = 98%) in predicting CVSS scores using CVE text descriptions. The results indicate that the variability, length, and details in the vulnerability description contribute to the performance of the transformer model. These findings are consistent across vulnerability descriptions from six companies between 2017 and 2019. The study's outcomes have the potential to enhance organizations' security posture, improving situational awareness and enabling better managerial decision-making in cybersecurity.</p></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"186 ","pages":"Article 114308"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced (cyber) situational awareness: Using interpretable principal component analysis (iPCA) to automate vulnerability severity scoring\",\"authors\":\"Motahareh Pourbehzadi , Giti Javidi , C. Jordan Howell , Eden Kamar , Ehsan Sheybani\",\"doi\":\"10.1016/j.dss.2024.114308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Common Vulnerability Scoring System (CVSS) is widely used in the cybersecurity industry to assess the severity of vulnerabilities. However, manual assessments and human error can lead to delays and inconsistencies. This study employs situational awareness theory to develop an automated decision support system, integrating perception, comprehension, and projection components to enhance effectiveness. Specifically, an interpretable principal component analysis (iPCA) combined with machine learning is utilized to forecast CVSS scores using text descriptions from the Common Vulnerabilities and Exposures (CVE) database. Different forecasting approaches, including traditional machine learning models, Long-Short Term Memory Neural Networks, and Transformer architectures (ChatGPT) are compared to determine the best performance. The results show that iPCA combined with support vector regression achieves a high performance (R<sup>2</sup> = 98%) in predicting CVSS scores using CVE text descriptions. The results indicate that the variability, length, and details in the vulnerability description contribute to the performance of the transformer model. These findings are consistent across vulnerability descriptions from six companies between 2017 and 2019. The study's outcomes have the potential to enhance organizations' security posture, improving situational awareness and enabling better managerial decision-making in cybersecurity.</p></div>\",\"PeriodicalId\":55181,\"journal\":{\"name\":\"Decision Support Systems\",\"volume\":\"186 \",\"pages\":\"Article 114308\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Support Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167923624001416\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923624001416","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Enhanced (cyber) situational awareness: Using interpretable principal component analysis (iPCA) to automate vulnerability severity scoring
The Common Vulnerability Scoring System (CVSS) is widely used in the cybersecurity industry to assess the severity of vulnerabilities. However, manual assessments and human error can lead to delays and inconsistencies. This study employs situational awareness theory to develop an automated decision support system, integrating perception, comprehension, and projection components to enhance effectiveness. Specifically, an interpretable principal component analysis (iPCA) combined with machine learning is utilized to forecast CVSS scores using text descriptions from the Common Vulnerabilities and Exposures (CVE) database. Different forecasting approaches, including traditional machine learning models, Long-Short Term Memory Neural Networks, and Transformer architectures (ChatGPT) are compared to determine the best performance. The results show that iPCA combined with support vector regression achieves a high performance (R2 = 98%) in predicting CVSS scores using CVE text descriptions. The results indicate that the variability, length, and details in the vulnerability description contribute to the performance of the transformer model. These findings are consistent across vulnerability descriptions from six companies between 2017 and 2019. The study's outcomes have the potential to enhance organizations' security posture, improving situational awareness and enabling better managerial decision-making in cybersecurity.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).