孔弹性-福克海默模型的无锁定数值方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Wenlong He , Jiwei Zhang
{"title":"孔弹性-福克海默模型的无锁定数值方法","authors":"Wenlong He ,&nbsp;Jiwei Zhang","doi":"10.1016/j.camwa.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a locking-free numerical method for the poroelasticity-Forchheimer problem, which exists locking phenomenon when directly using the continuous Galerkin mixed finite element method (MFEM) to be solved due to the influence of special physical parameters. To overcome the locking phenomenon, we reformulate the original problem into a new problem by introducing some new variables. The new problem can be taken as a Stokes-diffusion coupled model, which exists a built-in mechanism to circumvent the locking phenomenon for continuous Galerkin MFEM. Moreover, we prove the existence and uniqueness of weak solution with the help of a priori error estimate, some invariant quantities and the discussion on nonlinear term. After that, we propose a fully discrete numerical scheme to solve the reformulated problem, where the DL-scheme and L-scheme are designed to deal with the nonlinear term, and prove the optimal convergence in both time and space. Finally, numerical tests are presented to verify the theoretical results.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A locking free numerical method for the poroelasticity–Forchheimer model\",\"authors\":\"Wenlong He ,&nbsp;Jiwei Zhang\",\"doi\":\"10.1016/j.camwa.2024.08.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a locking-free numerical method for the poroelasticity-Forchheimer problem, which exists locking phenomenon when directly using the continuous Galerkin mixed finite element method (MFEM) to be solved due to the influence of special physical parameters. To overcome the locking phenomenon, we reformulate the original problem into a new problem by introducing some new variables. The new problem can be taken as a Stokes-diffusion coupled model, which exists a built-in mechanism to circumvent the locking phenomenon for continuous Galerkin MFEM. Moreover, we prove the existence and uniqueness of weak solution with the help of a priori error estimate, some invariant quantities and the discussion on nonlinear term. After that, we propose a fully discrete numerical scheme to solve the reformulated problem, where the DL-scheme and L-scheme are designed to deal with the nonlinear term, and prove the optimal convergence in both time and space. Finally, numerical tests are presented to verify the theoretical results.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003869\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003869","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于特殊物理参数的影响,在直接使用连续 Galerkin 混合有限元法(MFEM)求解孔弹性-Forchheimer 问题时存在锁定现象。为了克服锁定现象,我们通过引入一些新变量,将原问题重新表述为一个新问题。新问题可视为斯托克斯-扩散耦合模型,它存在一种内在机制来规避连续 Galerkin MFEM 的锁定现象。此外,我们还借助先验误差估计、一些不变量和对非线性项的讨论,证明了弱解的存在性和唯一性。之后,我们提出了一种完全离散的数值方案来求解重新表述的问题,其中设计了 DL 方案和 L 方案来处理非线性项,并证明了其在时间和空间上的最佳收敛性。最后,通过数值检验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A locking free numerical method for the poroelasticity–Forchheimer model

In this paper, we consider a locking-free numerical method for the poroelasticity-Forchheimer problem, which exists locking phenomenon when directly using the continuous Galerkin mixed finite element method (MFEM) to be solved due to the influence of special physical parameters. To overcome the locking phenomenon, we reformulate the original problem into a new problem by introducing some new variables. The new problem can be taken as a Stokes-diffusion coupled model, which exists a built-in mechanism to circumvent the locking phenomenon for continuous Galerkin MFEM. Moreover, we prove the existence and uniqueness of weak solution with the help of a priori error estimate, some invariant quantities and the discussion on nonlinear term. After that, we propose a fully discrete numerical scheme to solve the reformulated problem, where the DL-scheme and L-scheme are designed to deal with the nonlinear term, and prove the optimal convergence in both time and space. Finally, numerical tests are presented to verify the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信