Toni Himmelstoss, Florian Haas, Michael Becht, Tobias Heckmann
{"title":"奥地利中阿尔卑斯山格拉斯塔尔集水区极端降雨事件期间沉积物功能连通性的集水区尺度网络分析","authors":"Toni Himmelstoss, Florian Haas, Michael Becht, Tobias Heckmann","doi":"10.1016/j.geomorph.2024.109419","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming significantly impacts sediment dynamics in glaciated catchments, affecting water resource operations, water quality, recreational activities, and ecological systems. The propagation of climate-change-induced geomorphic changes and the catchment's sediment yield are moderated by sediment connectivity, defined as the degree to which a geomorphic system facilitates sediment transfer. Quantifying functional sediment connectivity at the catchment scale remains a challenge. To address this, we propose a novel approach combining graph theory with the morphological method. This approach is exemplified through a detailed case study of a 2022 thunderstorm event in the Grastal valley, Tyrol, Austria. First, a graph of potential sediment cascades is constructed using a geomorphological map, a digital elevation model and a flow routing algorithm. A short-term Digital Elevation Model of Difference (DoD) from consecutive ALS surveys is then used to infer sediment fluxes and calculate the Sediment Delivery Ratio (SDR) for each landform. The primary sediment mobilising processes were debris flows and fluvial erosion, with a significant proportion of debris flow material being deposited on slopes, not reaching the fluvial corridor. Strong fluvial erosion was observed in the proglacial area, but the propagation of these geomorphic changes is halted by an alluvial fan and a lake. Most landforms can be clearly categorised as connecting or disconnecting features based on their SDR. In total, a maximum of 12 % of mobilised sediments exited the catchment. Our findings demonstrate that (i) short-term, catchment-wide DoDs are valuable for assessing functional connectivity at an event temporal scale, (ii) using landforms as fundamental spatial units allows for the identification and in-depth analysis of critical sediment sinks and sources, and (iii) graph analysis facilitates the catchment-wide calculation of sediment delivery ratios between meaningful fundamental units and the delineation of significant sediment cascades.</p></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"465 ","pages":"Article 109419"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169555X24003696/pdfft?md5=c14a9eba1d3b06b8a5f9cc3a7322ecc2&pid=1-s2.0-S0169555X24003696-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Catchment-scale network analysis of functional sediment connectivity during an extreme rainfall event in the Grastal catchment, Austrian Central Alps\",\"authors\":\"Toni Himmelstoss, Florian Haas, Michael Becht, Tobias Heckmann\",\"doi\":\"10.1016/j.geomorph.2024.109419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global warming significantly impacts sediment dynamics in glaciated catchments, affecting water resource operations, water quality, recreational activities, and ecological systems. The propagation of climate-change-induced geomorphic changes and the catchment's sediment yield are moderated by sediment connectivity, defined as the degree to which a geomorphic system facilitates sediment transfer. Quantifying functional sediment connectivity at the catchment scale remains a challenge. To address this, we propose a novel approach combining graph theory with the morphological method. This approach is exemplified through a detailed case study of a 2022 thunderstorm event in the Grastal valley, Tyrol, Austria. First, a graph of potential sediment cascades is constructed using a geomorphological map, a digital elevation model and a flow routing algorithm. A short-term Digital Elevation Model of Difference (DoD) from consecutive ALS surveys is then used to infer sediment fluxes and calculate the Sediment Delivery Ratio (SDR) for each landform. The primary sediment mobilising processes were debris flows and fluvial erosion, with a significant proportion of debris flow material being deposited on slopes, not reaching the fluvial corridor. Strong fluvial erosion was observed in the proglacial area, but the propagation of these geomorphic changes is halted by an alluvial fan and a lake. Most landforms can be clearly categorised as connecting or disconnecting features based on their SDR. In total, a maximum of 12 % of mobilised sediments exited the catchment. Our findings demonstrate that (i) short-term, catchment-wide DoDs are valuable for assessing functional connectivity at an event temporal scale, (ii) using landforms as fundamental spatial units allows for the identification and in-depth analysis of critical sediment sinks and sources, and (iii) graph analysis facilitates the catchment-wide calculation of sediment delivery ratios between meaningful fundamental units and the delineation of significant sediment cascades.</p></div>\",\"PeriodicalId\":55115,\"journal\":{\"name\":\"Geomorphology\",\"volume\":\"465 \",\"pages\":\"Article 109419\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169555X24003696/pdfft?md5=c14a9eba1d3b06b8a5f9cc3a7322ecc2&pid=1-s2.0-S0169555X24003696-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomorphology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169555X24003696\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X24003696","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Catchment-scale network analysis of functional sediment connectivity during an extreme rainfall event in the Grastal catchment, Austrian Central Alps
Global warming significantly impacts sediment dynamics in glaciated catchments, affecting water resource operations, water quality, recreational activities, and ecological systems. The propagation of climate-change-induced geomorphic changes and the catchment's sediment yield are moderated by sediment connectivity, defined as the degree to which a geomorphic system facilitates sediment transfer. Quantifying functional sediment connectivity at the catchment scale remains a challenge. To address this, we propose a novel approach combining graph theory with the morphological method. This approach is exemplified through a detailed case study of a 2022 thunderstorm event in the Grastal valley, Tyrol, Austria. First, a graph of potential sediment cascades is constructed using a geomorphological map, a digital elevation model and a flow routing algorithm. A short-term Digital Elevation Model of Difference (DoD) from consecutive ALS surveys is then used to infer sediment fluxes and calculate the Sediment Delivery Ratio (SDR) for each landform. The primary sediment mobilising processes were debris flows and fluvial erosion, with a significant proportion of debris flow material being deposited on slopes, not reaching the fluvial corridor. Strong fluvial erosion was observed in the proglacial area, but the propagation of these geomorphic changes is halted by an alluvial fan and a lake. Most landforms can be clearly categorised as connecting or disconnecting features based on their SDR. In total, a maximum of 12 % of mobilised sediments exited the catchment. Our findings demonstrate that (i) short-term, catchment-wide DoDs are valuable for assessing functional connectivity at an event temporal scale, (ii) using landforms as fundamental spatial units allows for the identification and in-depth analysis of critical sediment sinks and sources, and (iii) graph analysis facilitates the catchment-wide calculation of sediment delivery ratios between meaningful fundamental units and the delineation of significant sediment cascades.
期刊介绍:
Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.