Jiangxing Wu, Junfei Li, Penghao Sun, Yuxiang Hu, Ziyong Li
{"title":"多态网络环境的理论框架","authors":"Jiangxing Wu, Junfei Li, Penghao Sun, Yuxiang Hu, Ziyong Li","doi":"10.1016/j.eng.2024.01.018","DOIUrl":null,"url":null,"abstract":"<div><p>The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures. Thus far, it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system, making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics. Here, we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement (S), multiplexity (M), and variousness (V)—which we name as the “impossible SMV triangle” dilemma. It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking, methodology, and practice norms. In this paper, we propose a theoretical framework called the polymorphic network environment (PNE), the first principle of which is to separate or decouple application network systems from the infrastructure environment and, under the given resource conditions, use core technologies such as the elementization of network baselines, the dynamic aggregation of resources, and collaborative software and hardware arrangements to generate the capability of the “network of networks.” This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions. An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"39 ","pages":"Pages 222-234"},"PeriodicalIF":10.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095809924000730/pdfft?md5=2b4cf4fb575342ea460511c2081efe02&pid=1-s2.0-S2095809924000730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Theoretical Framework for a Polymorphic Network Environment\",\"authors\":\"Jiangxing Wu, Junfei Li, Penghao Sun, Yuxiang Hu, Ziyong Li\",\"doi\":\"10.1016/j.eng.2024.01.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures. Thus far, it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system, making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics. Here, we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement (S), multiplexity (M), and variousness (V)—which we name as the “impossible SMV triangle” dilemma. It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking, methodology, and practice norms. In this paper, we propose a theoretical framework called the polymorphic network environment (PNE), the first principle of which is to separate or decouple application network systems from the infrastructure environment and, under the given resource conditions, use core technologies such as the elementization of network baselines, the dynamic aggregation of resources, and collaborative software and hardware arrangements to generate the capability of the “network of networks.” This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions. An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"39 \",\"pages\":\"Pages 222-234\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000730/pdfft?md5=2b4cf4fb575342ea460511c2081efe02&pid=1-s2.0-S2095809924000730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095809924000730\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924000730","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical Framework for a Polymorphic Network Environment
The question of whether an ideal network exists with global scalability in its full life cycle has always been a first-principles problem in the research of network systems and architectures. Thus far, it has not been possible to scientifically practice the design criteria of an ideal network in a unimorphic network system, making it difficult to adapt to known services with clear application scenarios while supporting the ever-growing future services with unexpected characteristics. Here, we theoretically prove that no unimorphic network system can simultaneously meet the scalability requirement in a full cycle in three dimensions—the service-level agreement (S), multiplexity (M), and variousness (V)—which we name as the “impossible SMV triangle” dilemma. It is only by transforming the current network development paradigm that the contradiction between global scalability and a unified network infrastructure can be resolved from the perspectives of thinking, methodology, and practice norms. In this paper, we propose a theoretical framework called the polymorphic network environment (PNE), the first principle of which is to separate or decouple application network systems from the infrastructure environment and, under the given resource conditions, use core technologies such as the elementization of network baselines, the dynamic aggregation of resources, and collaborative software and hardware arrangements to generate the capability of the “network of networks.” This makes it possible to construct an ideal network system that is designed for change and capable of symbiosis and coexistence with the generative network morpha in the spatiotemporal dimensions. An environment test for principle verification shows that the generated representative application network modalities can not only coexist without mutual influence but also independently match well-defined multimedia services or custom services under the constraints of technical and economic indicators.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.