Cailiang Song , Hao Li , Yun Han , Kailu Wang , Wenjun Yan , Xin Yang , Anyun Zhang , Hongning Wang
{"title":"宿主限制因子Rab11a通过融合肽介导的膜融合限制猪三角冠状病毒入侵细胞","authors":"Cailiang Song , Hao Li , Yun Han , Kailu Wang , Wenjun Yan , Xin Yang , Anyun Zhang , Hongning Wang","doi":"10.1016/j.vetmic.2024.110246","DOIUrl":null,"url":null,"abstract":"<div><p>Porcine deltacoronavirus (PDCoV) poses a serious threat to pork industry and has the potential for cross-species transmission. Yet, the invasion mechanisms and host factors involved are still unknown. In the present work, using siRNA interference and co-immunoprecipitation, we identified Annexin A2 (ANXA2), Prohibitin-2 (PHB2), or Caveolin-2 (CAV2) as host factors positively regulating the internalization of PDCoV. We further found that Rab11a co-localized with PDCoV S and inhibited PDCoV internalization. Subsequently, a pseudoviral infection model (LV-PDCoV S-GFP) was constructed, and ANXA2 or CAV2 promoted PDCoV invasion by downregulating Rab11a. Our results also indicated that ANXA2, CAV2, and Rab11a interact with the S protein via S-FP, thereby regulating virus-host membrane fusion. Through LV-PDCoV S-GFP infection, we found that Rab11a may act as a host restriction factor, and it could regulate the invasion efficiency of PDCoV by adding of exogenous GTP. These findings revealed that Rab11a was an exciting target to restrict fusion of PDCoV with host cell membranes.</p></div><div><h3>Availability of data and material</h3><p>Not applicable.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110246"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Host restriction factor Rab11a limits Porcine deltacoronavirus invasion of cells via fusion peptide-mediated membrane fusion\",\"authors\":\"Cailiang Song , Hao Li , Yun Han , Kailu Wang , Wenjun Yan , Xin Yang , Anyun Zhang , Hongning Wang\",\"doi\":\"10.1016/j.vetmic.2024.110246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porcine deltacoronavirus (PDCoV) poses a serious threat to pork industry and has the potential for cross-species transmission. Yet, the invasion mechanisms and host factors involved are still unknown. In the present work, using siRNA interference and co-immunoprecipitation, we identified Annexin A2 (ANXA2), Prohibitin-2 (PHB2), or Caveolin-2 (CAV2) as host factors positively regulating the internalization of PDCoV. We further found that Rab11a co-localized with PDCoV S and inhibited PDCoV internalization. Subsequently, a pseudoviral infection model (LV-PDCoV S-GFP) was constructed, and ANXA2 or CAV2 promoted PDCoV invasion by downregulating Rab11a. Our results also indicated that ANXA2, CAV2, and Rab11a interact with the S protein via S-FP, thereby regulating virus-host membrane fusion. Through LV-PDCoV S-GFP infection, we found that Rab11a may act as a host restriction factor, and it could regulate the invasion efficiency of PDCoV by adding of exogenous GTP. These findings revealed that Rab11a was an exciting target to restrict fusion of PDCoV with host cell membranes.</p></div><div><h3>Availability of data and material</h3><p>Not applicable.</p></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110246\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002682\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002682","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Host restriction factor Rab11a limits Porcine deltacoronavirus invasion of cells via fusion peptide-mediated membrane fusion
Porcine deltacoronavirus (PDCoV) poses a serious threat to pork industry and has the potential for cross-species transmission. Yet, the invasion mechanisms and host factors involved are still unknown. In the present work, using siRNA interference and co-immunoprecipitation, we identified Annexin A2 (ANXA2), Prohibitin-2 (PHB2), or Caveolin-2 (CAV2) as host factors positively regulating the internalization of PDCoV. We further found that Rab11a co-localized with PDCoV S and inhibited PDCoV internalization. Subsequently, a pseudoviral infection model (LV-PDCoV S-GFP) was constructed, and ANXA2 or CAV2 promoted PDCoV invasion by downregulating Rab11a. Our results also indicated that ANXA2, CAV2, and Rab11a interact with the S protein via S-FP, thereby regulating virus-host membrane fusion. Through LV-PDCoV S-GFP infection, we found that Rab11a may act as a host restriction factor, and it could regulate the invasion efficiency of PDCoV by adding of exogenous GTP. These findings revealed that Rab11a was an exciting target to restrict fusion of PDCoV with host cell membranes.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.