用达尔布变换方法求解另一双分量卡马萨-霍姆方程的多孑L解

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"用达尔布变换方法求解另一双分量卡马萨-霍姆方程的多孑L解","authors":"","doi":"10.1016/j.wavemoti.2024.103396","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop another approach to construct the multi-soliton solutions of a two-component Camassa–Holm equation in terms of Wronskians with help of a reciprocal transformation and a gauge transformation. Its kink solution, loop solution and smooth soliton solution are presented. Then with the non-trivial limiting procedure, the solution of Camassa–Holm equation is also derived from that of two-component Camassa–Holm equation.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The multi-soliton solutions of another two-component Camassa–Holm equation with Darboux transformation approach\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop another approach to construct the multi-soliton solutions of a two-component Camassa–Holm equation in terms of Wronskians with help of a reciprocal transformation and a gauge transformation. Its kink solution, loop solution and smooth soliton solution are presented. Then with the non-trivial limiting procedure, the solution of Camassa–Holm equation is also derived from that of two-component Camassa–Holm equation.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001264\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001264","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们开发了另一种方法,借助倒易变换和量规变换,以弗伦斯基(Wronskians)为单位构建双分量卡马萨-霍尔姆方程的多孤子解。其中介绍了其扭结解、环解和光滑孤子解。然后,利用非三维极限过程,从双分量卡马萨-霍尔姆方程的解中也导出了卡马萨-霍尔姆方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The multi-soliton solutions of another two-component Camassa–Holm equation with Darboux transformation approach

In this paper, we develop another approach to construct the multi-soliton solutions of a two-component Camassa–Holm equation in terms of Wronskians with help of a reciprocal transformation and a gauge transformation. Its kink solution, loop solution and smooth soliton solution are presented. Then with the non-trivial limiting procedure, the solution of Camassa–Holm equation is also derived from that of two-component Camassa–Holm equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信