Haoli Gao , Xiaowei Yuan , Tianshun He , Zhen Zhang , Jingting Wang , Huihui Zhang , Xumin Lin , Zewen Liu
{"title":"醚菊酯对唾液蛋白基因表达的下调在一定程度上有助于降低褐飞虱繁殖力增加的风险","authors":"Haoli Gao , Xiaowei Yuan , Tianshun He , Zhen Zhang , Jingting Wang , Huihui Zhang , Xumin Lin , Zewen Liu","doi":"10.1016/j.pestbp.2024.106118","DOIUrl":null,"url":null,"abstract":"<div><p>Etofenprox is a pyrethroid insecticide that acts on the nervous system of insects. Due to its low toxicity to aquatic animals, it is permitted for use in controlling insect pests in rice fields. The brown planthopper (BPH), <em>Nilaparvata lugens,</em> a significant piercing-sucking pest feeding on rice exclusively, secretes various salivary components when feeding. Salivary proteins are essential for BPH feeding, but their response to etofenprox is not well understood. The application of etofenprox down-regulated the expression of 21 salivary protein genes, among which 9 genes (<em>NlShpa</em>, <em>Salivap 3</em>, <em>CA</em>, <em>NlSEF1</em>, <em>Nl12</em>, <em>NlHSC70–3</em>, <em>NlSP1</em>, <em>NlG14</em>, and <em>NlDNAJB9</em>) showed significant differences. Most differentially expressed genes are found important for BPH physiological processes, except <em>Nl12</em>. Here we found that silencing <em>Nl12</em> impeded ovary development, thereby inhibiting oocyte formation. The potential explanation was that <em>Nl12</em> was highly expressed in both salivary gland and ovary, and the ovary development abnormality may be due to the direct effect from expression reduction in ovary and/or indirect influence from expression reduction in salivary gland. Altogether, our findings provide a new insight into the mechanism of action of etofenprox on insect pests and explain part of the reason why etofenprox does not stimulate reproduction in BPH.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"205 ","pages":"Article 106118"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The down-regulation of salivary protein gene expression by etofenprox partially contributed to reducing the risk of increased fecundity in the brown planthopper\",\"authors\":\"Haoli Gao , Xiaowei Yuan , Tianshun He , Zhen Zhang , Jingting Wang , Huihui Zhang , Xumin Lin , Zewen Liu\",\"doi\":\"10.1016/j.pestbp.2024.106118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Etofenprox is a pyrethroid insecticide that acts on the nervous system of insects. Due to its low toxicity to aquatic animals, it is permitted for use in controlling insect pests in rice fields. The brown planthopper (BPH), <em>Nilaparvata lugens,</em> a significant piercing-sucking pest feeding on rice exclusively, secretes various salivary components when feeding. Salivary proteins are essential for BPH feeding, but their response to etofenprox is not well understood. The application of etofenprox down-regulated the expression of 21 salivary protein genes, among which 9 genes (<em>NlShpa</em>, <em>Salivap 3</em>, <em>CA</em>, <em>NlSEF1</em>, <em>Nl12</em>, <em>NlHSC70–3</em>, <em>NlSP1</em>, <em>NlG14</em>, and <em>NlDNAJB9</em>) showed significant differences. Most differentially expressed genes are found important for BPH physiological processes, except <em>Nl12</em>. Here we found that silencing <em>Nl12</em> impeded ovary development, thereby inhibiting oocyte formation. The potential explanation was that <em>Nl12</em> was highly expressed in both salivary gland and ovary, and the ovary development abnormality may be due to the direct effect from expression reduction in ovary and/or indirect influence from expression reduction in salivary gland. Altogether, our findings provide a new insight into the mechanism of action of etofenprox on insect pests and explain part of the reason why etofenprox does not stimulate reproduction in BPH.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":\"205 \",\"pages\":\"Article 106118\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003511\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003511","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The down-regulation of salivary protein gene expression by etofenprox partially contributed to reducing the risk of increased fecundity in the brown planthopper
Etofenprox is a pyrethroid insecticide that acts on the nervous system of insects. Due to its low toxicity to aquatic animals, it is permitted for use in controlling insect pests in rice fields. The brown planthopper (BPH), Nilaparvata lugens, a significant piercing-sucking pest feeding on rice exclusively, secretes various salivary components when feeding. Salivary proteins are essential for BPH feeding, but their response to etofenprox is not well understood. The application of etofenprox down-regulated the expression of 21 salivary protein genes, among which 9 genes (NlShpa, Salivap 3, CA, NlSEF1, Nl12, NlHSC70–3, NlSP1, NlG14, and NlDNAJB9) showed significant differences. Most differentially expressed genes are found important for BPH physiological processes, except Nl12. Here we found that silencing Nl12 impeded ovary development, thereby inhibiting oocyte formation. The potential explanation was that Nl12 was highly expressed in both salivary gland and ovary, and the ovary development abnormality may be due to the direct effect from expression reduction in ovary and/or indirect influence from expression reduction in salivary gland. Altogether, our findings provide a new insight into the mechanism of action of etofenprox on insect pests and explain part of the reason why etofenprox does not stimulate reproduction in BPH.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.