STVformer:带有辅助知识的海面温度预测时空变量变换器

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
{"title":"STVformer:带有辅助知识的海面温度预测时空变量变换器","authors":"","doi":"10.1016/j.apor.2024.104218","DOIUrl":null,"url":null,"abstract":"<div><p>Sea surface temperature (SST) is a crucial indicator among the various factors influencing ocean dynamics. It significantly impacts weather patterns, ocean circulation, and marine biodiversity. SST variation is affected by multiple factors such as solar radiation and air-sea heat exchange, which contribute to the complexity of accurately predicting sea surface temperatures. The challenges of SST prediction tasks stem from the difficulty in modeling the coupling relationships between dynamic ocean variables and capturing long-term spatio-temporal dependencies. Existing data-driven methods for SST prediction overlook the physical relationships between ocean variables, and struggle to effectively capture long-term features. In this work, we propose a spatio-temporal-variable transformer model (STVformer) consisting of multi-variable feature representation module and spatio-temporal-variable saliency modeling module for SST prediction. STVformer first models the physical relationship among auxiliary variables including short-wave radiation (SWR), long-wave radiation (LWR), latent heat flux (LHF) and sensible heat flux (SHF) based on the heat budget equation. Then, it leverages the saliency self-attention mechanism and the spatio-temporal attention mechanism to effectively learn the spatio-temporal-variable correlations and long-term dependencies. Extensive experiments are carried out on two datasets to validate the effectiveness of STVformer. The experimental results demonstrate that STVformer surpasses existing methods in SST prediction.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STVformer: A spatial-temporal-variable transformer with auxiliary knowledge for sea surface temperature prediction\",\"authors\":\"\",\"doi\":\"10.1016/j.apor.2024.104218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sea surface temperature (SST) is a crucial indicator among the various factors influencing ocean dynamics. It significantly impacts weather patterns, ocean circulation, and marine biodiversity. SST variation is affected by multiple factors such as solar radiation and air-sea heat exchange, which contribute to the complexity of accurately predicting sea surface temperatures. The challenges of SST prediction tasks stem from the difficulty in modeling the coupling relationships between dynamic ocean variables and capturing long-term spatio-temporal dependencies. Existing data-driven methods for SST prediction overlook the physical relationships between ocean variables, and struggle to effectively capture long-term features. In this work, we propose a spatio-temporal-variable transformer model (STVformer) consisting of multi-variable feature representation module and spatio-temporal-variable saliency modeling module for SST prediction. STVformer first models the physical relationship among auxiliary variables including short-wave radiation (SWR), long-wave radiation (LWR), latent heat flux (LHF) and sensible heat flux (SHF) based on the heat budget equation. Then, it leverages the saliency self-attention mechanism and the spatio-temporal attention mechanism to effectively learn the spatio-temporal-variable correlations and long-term dependencies. Extensive experiments are carried out on two datasets to validate the effectiveness of STVformer. The experimental results demonstrate that STVformer surpasses existing methods in SST prediction.</p></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003390\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

海面温度(SST)是影响海洋动态的各种因素中的一个重要指标。它对天气模式、海洋环流和海洋生物多样性有重大影响。海表温度的变化受太阳辐射和海气热交换等多种因素的影响,这些因素增加了准确预测海表温度的复杂性。海表温度预测任务所面临的挑战来自于难以模拟动态海洋变量之间的耦合关系和捕捉长期时空依赖关系。现有的数据驱动型 SST 预测方法忽视了海洋变量之间的物理关系,难以有效捕捉长期特征。在这项工作中,我们提出了一种由多变量特征表示模块和时空变量显著性建模模块组成的时空变量变换器模型(STVformer),用于 SST 预测。STVformer 首先根据热预算方程建立辅助变量之间的物理关系模型,包括短波辐射(SWR)、长波辐射(LWR)、潜热通量(LHF)和显热通量(SHF)。然后,它利用显著性自我注意机制和时空注意机制,有效地学习时空变量相关性和长期依赖性。为了验证 STVformer 的有效性,我们在两个数据集上进行了广泛的实验。实验结果表明,STVformer 在 SST 预测方面超越了现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STVformer: A spatial-temporal-variable transformer with auxiliary knowledge for sea surface temperature prediction

Sea surface temperature (SST) is a crucial indicator among the various factors influencing ocean dynamics. It significantly impacts weather patterns, ocean circulation, and marine biodiversity. SST variation is affected by multiple factors such as solar radiation and air-sea heat exchange, which contribute to the complexity of accurately predicting sea surface temperatures. The challenges of SST prediction tasks stem from the difficulty in modeling the coupling relationships between dynamic ocean variables and capturing long-term spatio-temporal dependencies. Existing data-driven methods for SST prediction overlook the physical relationships between ocean variables, and struggle to effectively capture long-term features. In this work, we propose a spatio-temporal-variable transformer model (STVformer) consisting of multi-variable feature representation module and spatio-temporal-variable saliency modeling module for SST prediction. STVformer first models the physical relationship among auxiliary variables including short-wave radiation (SWR), long-wave radiation (LWR), latent heat flux (LHF) and sensible heat flux (SHF) based on the heat budget equation. Then, it leverages the saliency self-attention mechanism and the spatio-temporal attention mechanism to effectively learn the spatio-temporal-variable correlations and long-term dependencies. Extensive experiments are carried out on two datasets to validate the effectiveness of STVformer. The experimental results demonstrate that STVformer surpasses existing methods in SST prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信