{"title":"基于强化学习的椭圆轨道航天器追逐-逃避博弈决策","authors":"Weizhuo Yu , Chuang Liu , Xiaokui Yue","doi":"10.1016/j.conengprac.2024.106072","DOIUrl":null,"url":null,"abstract":"<div><p>The orbital game theory is a fundamental technology for the cleanup of space debris to improve the safety of useful spacecraft in future, thus, this work develops a decision-making method by reinforcement learning technology to implement the pursuit-evasion game in elliptical orbits. The linearized Tschauner-Hempel equation describes the spacecraft's motion and the problem is formulated by game theory. Subsequently, an impulsive maneuvering model in a complete three-dimensional elliptical orbit is established. Then an algorithm based on deep deterministic policy gradient is designed to solve the optimal strategy for the pursuit-evasion game. For the successful decision of the pursuer, an extensive reward function is designed and improved considering the shortest time, optimal fuel, and collision avoidance. Finally, numerical simulations of a pursuit-evasion mission are performed to demonstrate the effectiveness and superiority of the proposed decision-making algorithm. The game success rate of the algorithm against targets with different maneuvering abilities is verified, which implies that the algorithm can be applied in extended scenarios.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106072"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning-based decision-making for spacecraft pursuit-evasion game in elliptical orbits\",\"authors\":\"Weizhuo Yu , Chuang Liu , Xiaokui Yue\",\"doi\":\"10.1016/j.conengprac.2024.106072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The orbital game theory is a fundamental technology for the cleanup of space debris to improve the safety of useful spacecraft in future, thus, this work develops a decision-making method by reinforcement learning technology to implement the pursuit-evasion game in elliptical orbits. The linearized Tschauner-Hempel equation describes the spacecraft's motion and the problem is formulated by game theory. Subsequently, an impulsive maneuvering model in a complete three-dimensional elliptical orbit is established. Then an algorithm based on deep deterministic policy gradient is designed to solve the optimal strategy for the pursuit-evasion game. For the successful decision of the pursuer, an extensive reward function is designed and improved considering the shortest time, optimal fuel, and collision avoidance. Finally, numerical simulations of a pursuit-evasion mission are performed to demonstrate the effectiveness and superiority of the proposed decision-making algorithm. The game success rate of the algorithm against targets with different maneuvering abilities is verified, which implies that the algorithm can be applied in extended scenarios.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"153 \",\"pages\":\"Article 106072\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002314\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002314","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Reinforcement learning-based decision-making for spacecraft pursuit-evasion game in elliptical orbits
The orbital game theory is a fundamental technology for the cleanup of space debris to improve the safety of useful spacecraft in future, thus, this work develops a decision-making method by reinforcement learning technology to implement the pursuit-evasion game in elliptical orbits. The linearized Tschauner-Hempel equation describes the spacecraft's motion and the problem is formulated by game theory. Subsequently, an impulsive maneuvering model in a complete three-dimensional elliptical orbit is established. Then an algorithm based on deep deterministic policy gradient is designed to solve the optimal strategy for the pursuit-evasion game. For the successful decision of the pursuer, an extensive reward function is designed and improved considering the shortest time, optimal fuel, and collision avoidance. Finally, numerical simulations of a pursuit-evasion mission are performed to demonstrate the effectiveness and superiority of the proposed decision-making algorithm. The game success rate of the algorithm against targets with different maneuvering abilities is verified, which implies that the algorithm can be applied in extended scenarios.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.