{"title":"早古生代原东亚大陆边缘的构造演化:日本东北部南北上带古生代变质岩的推论","authors":"","doi":"10.1016/j.jseaes.2024.106317","DOIUrl":null,"url":null,"abstract":"<div><p>To constrain the incipient Pacific-type orogeny and tectonic processes in the Early Paleozoic proto-East Asian continental margin, the Motai–Matsugadaira–Yamagami (MMY) metamorphic rocks in the South Kitakami belt, northeast Japan were investigated. They are divided into two different types: amphibolite-facies rocks associated with serpentinite and blueschist-facies rocks associated with pelitic and psammitic schists. Three geochemical groups are identified from the MMY metamorphic rocks. Groups 1 and 2 resemble geochemical characteristics of mid-ocean ridge basalt and continental arc rocks, respectively. Group 3 exhibits considerable depletion of highly incompatible elements, which is caused by the high degree of partial melting of a hot mantle plume. The zircon U–Pb ages of Group 1 indicate that the protoliths experienced amphibolite-facies metamorphism soon after their formation in the Early Ordovician. Group 2 exhibits a coeval zircon U–Pb age with Group 1. The age distribution of detrital zircons in the MMY psammitic schists shows a peak of 500–400 Ma, the presence of Archean to Neoproterozoic zircons, and the youngest Late Devonian zircon. The following model is proposed for the tectonic evolution of the proto-East Asian continental margin: (1) the formation of an arc in the eastern margin of the South China craton in the Cambrian to Ordovician; (2) the subduction of a spreading axis and an oceanic plateau at the same time as the continental arc formation; (3) the consumption and subduction of arc materials by tectonic erosion; and (4) the formation of the Carboniferous accretionary complex and high-pressure metamorphic rocks under steady oceanic plate subduction. The proposed tectonic evolution model may also be applicable to equivalent Early Paleozoic rocks in southwest Japan.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tectonic evolution of the Early Paleozoic proto-East Asian continental margin: Inference from Paleozoic metamorphic rocks in the South Kitakami belt, northeast Japan\",\"authors\":\"\",\"doi\":\"10.1016/j.jseaes.2024.106317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To constrain the incipient Pacific-type orogeny and tectonic processes in the Early Paleozoic proto-East Asian continental margin, the Motai–Matsugadaira–Yamagami (MMY) metamorphic rocks in the South Kitakami belt, northeast Japan were investigated. They are divided into two different types: amphibolite-facies rocks associated with serpentinite and blueschist-facies rocks associated with pelitic and psammitic schists. Three geochemical groups are identified from the MMY metamorphic rocks. Groups 1 and 2 resemble geochemical characteristics of mid-ocean ridge basalt and continental arc rocks, respectively. Group 3 exhibits considerable depletion of highly incompatible elements, which is caused by the high degree of partial melting of a hot mantle plume. The zircon U–Pb ages of Group 1 indicate that the protoliths experienced amphibolite-facies metamorphism soon after their formation in the Early Ordovician. Group 2 exhibits a coeval zircon U–Pb age with Group 1. The age distribution of detrital zircons in the MMY psammitic schists shows a peak of 500–400 Ma, the presence of Archean to Neoproterozoic zircons, and the youngest Late Devonian zircon. The following model is proposed for the tectonic evolution of the proto-East Asian continental margin: (1) the formation of an arc in the eastern margin of the South China craton in the Cambrian to Ordovician; (2) the subduction of a spreading axis and an oceanic plateau at the same time as the continental arc formation; (3) the consumption and subduction of arc materials by tectonic erosion; and (4) the formation of the Carboniferous accretionary complex and high-pressure metamorphic rocks under steady oceanic plate subduction. The proposed tectonic evolution model may also be applicable to equivalent Early Paleozoic rocks in southwest Japan.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024003122\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003122","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Tectonic evolution of the Early Paleozoic proto-East Asian continental margin: Inference from Paleozoic metamorphic rocks in the South Kitakami belt, northeast Japan
To constrain the incipient Pacific-type orogeny and tectonic processes in the Early Paleozoic proto-East Asian continental margin, the Motai–Matsugadaira–Yamagami (MMY) metamorphic rocks in the South Kitakami belt, northeast Japan were investigated. They are divided into two different types: amphibolite-facies rocks associated with serpentinite and blueschist-facies rocks associated with pelitic and psammitic schists. Three geochemical groups are identified from the MMY metamorphic rocks. Groups 1 and 2 resemble geochemical characteristics of mid-ocean ridge basalt and continental arc rocks, respectively. Group 3 exhibits considerable depletion of highly incompatible elements, which is caused by the high degree of partial melting of a hot mantle plume. The zircon U–Pb ages of Group 1 indicate that the protoliths experienced amphibolite-facies metamorphism soon after their formation in the Early Ordovician. Group 2 exhibits a coeval zircon U–Pb age with Group 1. The age distribution of detrital zircons in the MMY psammitic schists shows a peak of 500–400 Ma, the presence of Archean to Neoproterozoic zircons, and the youngest Late Devonian zircon. The following model is proposed for the tectonic evolution of the proto-East Asian continental margin: (1) the formation of an arc in the eastern margin of the South China craton in the Cambrian to Ordovician; (2) the subduction of a spreading axis and an oceanic plateau at the same time as the continental arc formation; (3) the consumption and subduction of arc materials by tectonic erosion; and (4) the formation of the Carboniferous accretionary complex and high-pressure metamorphic rocks under steady oceanic plate subduction. The proposed tectonic evolution model may also be applicable to equivalent Early Paleozoic rocks in southwest Japan.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.