{"title":"(2+1)维混合分数 Broer-Kaup-Kupershmidt 系统的不变分析、不变子空间法和守恒定律","authors":"Qiongya Gu, Lizhen Wang","doi":"10.1016/j.cjph.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system (MFBKKS) with Riemann–Liouville time fractional derivative and integer order y-derivative. This system models dispersive and nonlinear long gravity waves propagating in shallow water in two horizontal directions with time memories. Lie symmetry analysis and invariant subspace method are distinctly employed to construct the exact solutions to the MFBKKS. Initially, the Lie algebras admitted by MFBKKS are obtained with the help of Lie symmetry analysis. Then, we establish the commutative table, adjoint relations and adjoint transformation matrix. Specifically, the one-dimensional optimal system is established correspondingly, and symmetry reduction is performed. In particular, (2+1)-dimensional MFBKKS is reduced to (1+1)-dimensional mixed fractional system using Erdélyi–Kober fractional differential operator. Further, the power series solution of MFBKKS is constructed via power series method. By applying invariant subspace method, we obtain more exact solutions of MFBKKS. In addition, the conservation laws are derived by new Noether theorem. Finally, the three-dimensional diagrams of some obtained solutions are demonstrated utilizing Matlab for visualization, and some of the calculations were verified using computational packages Maple for symbolic computation.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant analysis, invariant subspace method and conservation laws of the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system\",\"authors\":\"Qiongya Gu, Lizhen Wang\",\"doi\":\"10.1016/j.cjph.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system (MFBKKS) with Riemann–Liouville time fractional derivative and integer order y-derivative. This system models dispersive and nonlinear long gravity waves propagating in shallow water in two horizontal directions with time memories. Lie symmetry analysis and invariant subspace method are distinctly employed to construct the exact solutions to the MFBKKS. Initially, the Lie algebras admitted by MFBKKS are obtained with the help of Lie symmetry analysis. Then, we establish the commutative table, adjoint relations and adjoint transformation matrix. Specifically, the one-dimensional optimal system is established correspondingly, and symmetry reduction is performed. In particular, (2+1)-dimensional MFBKKS is reduced to (1+1)-dimensional mixed fractional system using Erdélyi–Kober fractional differential operator. Further, the power series solution of MFBKKS is constructed via power series method. By applying invariant subspace method, we obtain more exact solutions of MFBKKS. In addition, the conservation laws are derived by new Noether theorem. Finally, the three-dimensional diagrams of some obtained solutions are demonstrated utilizing Matlab for visualization, and some of the calculations were verified using computational packages Maple for symbolic computation.</p></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003022\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003022","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Invariant analysis, invariant subspace method and conservation laws of the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system
In this paper, we investigate the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system (MFBKKS) with Riemann–Liouville time fractional derivative and integer order y-derivative. This system models dispersive and nonlinear long gravity waves propagating in shallow water in two horizontal directions with time memories. Lie symmetry analysis and invariant subspace method are distinctly employed to construct the exact solutions to the MFBKKS. Initially, the Lie algebras admitted by MFBKKS are obtained with the help of Lie symmetry analysis. Then, we establish the commutative table, adjoint relations and adjoint transformation matrix. Specifically, the one-dimensional optimal system is established correspondingly, and symmetry reduction is performed. In particular, (2+1)-dimensional MFBKKS is reduced to (1+1)-dimensional mixed fractional system using Erdélyi–Kober fractional differential operator. Further, the power series solution of MFBKKS is constructed via power series method. By applying invariant subspace method, we obtain more exact solutions of MFBKKS. In addition, the conservation laws are derived by new Noether theorem. Finally, the three-dimensional diagrams of some obtained solutions are demonstrated utilizing Matlab for visualization, and some of the calculations were verified using computational packages Maple for symbolic computation.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.