无限平行盘间磁流体挤压流的计算研究

Q1 Chemical Engineering
{"title":"无限平行盘间磁流体挤压流的计算研究","authors":"","doi":"10.1016/j.ijft.2024.100847","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the magnetohydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite parallel disks with a perpendicular magnetic field. The study focuses on the case where the upper disk moves towards a stationary lower disk. By employing similarity variables, we reduce the MHD momentum and continuity equations into a fourth-order linear boundary value problem, solved using a modified operational matrix method. The numerical approach is validated through <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-truncation error analysis, boundary condition comparisons, and by comparing results with other methods like HAM, HPM, and bvp4c that produce analytical and numerical solutions. Graphical analyses reveal the effects of the squeeze number, Hartman number, and the boundary parameter on velocity and flow profile. Results indicate that the Hartman number significantly affects the velocity due to the Lorentz force, while the squeeze number and boundary parameter influence the velocity and flow profile differently in suction and injection cases. The numerical solution demonstrates high accuracy and convergence compared to previous methods in terms of absolute error.</p></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266620272400288X/pdfft?md5=61893cb9e65b73f7bea226e88896cab8&pid=1-s2.0-S266620272400288X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Computational study of magnetohydrodynamic squeeze flow between infinite parallel disks\",\"authors\":\"\",\"doi\":\"10.1016/j.ijft.2024.100847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the magnetohydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite parallel disks with a perpendicular magnetic field. The study focuses on the case where the upper disk moves towards a stationary lower disk. By employing similarity variables, we reduce the MHD momentum and continuity equations into a fourth-order linear boundary value problem, solved using a modified operational matrix method. The numerical approach is validated through <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-truncation error analysis, boundary condition comparisons, and by comparing results with other methods like HAM, HPM, and bvp4c that produce analytical and numerical solutions. Graphical analyses reveal the effects of the squeeze number, Hartman number, and the boundary parameter on velocity and flow profile. Results indicate that the Hartman number significantly affects the velocity due to the Lorentz force, while the squeeze number and boundary parameter influence the velocity and flow profile differently in suction and injection cases. The numerical solution demonstrates high accuracy and convergence compared to previous methods in terms of absolute error.</p></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266620272400288X/pdfft?md5=61893cb9e65b73f7bea226e88896cab8&pid=1-s2.0-S266620272400288X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266620272400288X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266620272400288X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了导电流体在垂直磁场的两个无限平行圆盘之间的磁流体挤压流(MHD)。研究重点是上圆盘向静止的下圆盘移动的情况。通过使用相似变量,我们将 MHD 动量方程和连续性方程简化为四阶线性边界值问题,并使用改进的运算矩阵法求解。通过 L2 截断误差分析、边界条件比较以及与其他方法(如 HAM、HPM 和 bvp4c)的结果比较,我们验证了这种数值方法的分析和数值解法。图形分析显示了挤压数、哈特曼数和边界参数对速度和流动剖面的影响。结果表明,由于洛伦兹力的作用,哈特曼数对速度的影响很大,而挤压数和边界参数对吸入和注入情况下的速度和流动剖面的影响则不同。就绝对误差而言,与以前的方法相比,数值求解显示出较高的精度和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational study of magnetohydrodynamic squeeze flow between infinite parallel disks

This paper explores the magnetohydrodynamic (MHD) squeeze flow of an electrically conducting fluid between two infinite parallel disks with a perpendicular magnetic field. The study focuses on the case where the upper disk moves towards a stationary lower disk. By employing similarity variables, we reduce the MHD momentum and continuity equations into a fourth-order linear boundary value problem, solved using a modified operational matrix method. The numerical approach is validated through L2-truncation error analysis, boundary condition comparisons, and by comparing results with other methods like HAM, HPM, and bvp4c that produce analytical and numerical solutions. Graphical analyses reveal the effects of the squeeze number, Hartman number, and the boundary parameter on velocity and flow profile. Results indicate that the Hartman number significantly affects the velocity due to the Lorentz force, while the squeeze number and boundary parameter influence the velocity and flow profile differently in suction and injection cases. The numerical solution demonstrates high accuracy and convergence compared to previous methods in terms of absolute error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信