{"title":"针对僵化问题的跨阶段并行稳定显式同行方法","authors":"Giovanni Pagano","doi":"10.1016/j.apnum.2024.08.023","DOIUrl":null,"url":null,"abstract":"<div><p>In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) <span><span>[5]</span></span> for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.</p><p>In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 156-173"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilized explicit peer methods with parallelism across the stages for stiff problems\",\"authors\":\"Giovanni Pagano\",\"doi\":\"10.1016/j.apnum.2024.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) <span><span>[5]</span></span> for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.</p><p>In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"207 \",\"pages\":\"Pages 156-173\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002265\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002265","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stabilized explicit peer methods with parallelism across the stages for stiff problems
In this manuscript, we propose a new family of stabilized explicit parallelizable peer methods for the solution of stiff Initial Value Problems (IVPs). These methods are derived through the employment of a class of preconditioners proposed by Bassenne et al. (2021) [5] for the construction of a family of linearly implicit Runge-Kutta (RK) schemes.
In this paper, we combine the mentioned preconditioners with explicit two-step peer methods, obtaining a new class of linearly implicit numerical schemes that admit parallelism on the stages. Through an in-depth theoretical investigation, we set free parameters of both the preconditioners and the underlying explicit methods that allow deriving new peer schemes of order two, three and four, with good stability properties and small Local Truncation Error (LTE). Numerical experiments conducted on Partial Differential Equations (PDEs) arising from application contexts show the efficiency of the new peer methods proposed here, and highlight their competitiveness with other linearly implicit numerical schemes.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.