奇异扰动抛物线二维对流-扩散-反应问题的参数统一混合方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mrityunjoy Barman , Srinivasan Natesan , Ali Sendur
{"title":"奇异扰动抛物线二维对流-扩散-反应问题的参数统一混合方法","authors":"Mrityunjoy Barman ,&nbsp;Srinivasan Natesan ,&nbsp;Ali Sendur","doi":"10.1016/j.apnum.2024.08.026","DOIUrl":null,"url":null,"abstract":"<div><p>The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems\",\"authors\":\"Mrityunjoy Barman ,&nbsp;Srinivasan Natesan ,&nbsp;Ali Sendur\",\"doi\":\"10.1016/j.apnum.2024.08.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对流-扩散-反应型奇异扰动问题(SPP)的解在矩形域中可能会出现规则层和角层。在这项工作中,我们构建并分析了一种参数均匀算子分割交替方向隐式(ADI)方案,用于高效求解具有两个正参数的二维抛物线奇异扰动问题。所提出的模型结合了时间上定义在均匀网格上的后向-欧拉法和空间上定义在特殊 Shishkin 网格上的混合法。分析是在适应层的片状均匀 Shishkin 网格上进行的。事实证明,所开发的数值方法在时间上是一阶收敛的,在空间上几乎是二阶收敛的。数值实验验证了理论收敛结果,并说明了当前策略的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parameter-uniform hybrid method for singularly perturbed parabolic 2D convection-diffusion-reaction problems

The solution of the singular perturbation problems (SPP) of convection-diffusion-reaction type may exhibit regular and corner layers in a rectangular domain. In this work, we construct and analyze a parameter-uniform operator-splitting alternating direction implicit (ADI) scheme to efficiently solve a two-dimensional parabolic singularly perturbed problem with two positive parameters. The proposed model is a combination of the backward-Euler method defined on a uniform mesh in time and a hybrid method in space defined on a special Shishkin mesh. The analysis is presented on a layer adapted piecewise-uniform Shishkin mesh. The developed numerical method is proved to be first-order convergent in time and almost second-order convergent in space. The numerical experiments are performed to validate the theoretical convergence results and illustrate the efficiency of the current strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信