{"title":"利用时间序列卫星图像和改进的深度学习模型检测泰国东北部的淤地物体","authors":"","doi":"10.1016/j.jas.2024.106070","DOIUrl":null,"url":null,"abstract":"<div><p>Moated sites are crucial for revealing the formation of early civilizations and societies in Southeast Asia, and a significant amount of effort has been expended in investigating their distribution. This work is the first application of deep learning object detection methods to identify moated sites from time series satellite images. We presented multi-information fusion data (N-RGB) based on the fusion of multispectral and vegetation indices from Sentinel-2 time series imagery, generated a dataset of moated sites via the data augmentation method, and improved the YOLOv5s model by adding bidirectional feature pyramid network (BiFPN) structures for automatically identifying moated sites. <strong>The results</strong> indicate that the model trained with time series N-RGB data improves precision, recall, and mAP by more than 20.0% compared with single image data. The improved model was able to enhance the identification of small, moated sites and achieved 100% detection in a test of 100 moated sites. <strong>Ultimately</strong>, 629 targets were detected in northeast Thailand, with a false-negative rate of less than 3%, and 116 probable sites were identified. Among these, 6 probable sites were highly likely to be moated sites, as visually verified by high-resolution GEE imagery. <strong>In addition</strong>, among the targets automatically detected in other regions of continental Southeast Asia, the 5, 3, 2, 1, and 7 most probable sites were identified in Cambodia, Myanmar, Laos, Vietnam and other regions of Thailand, respectively. <strong>In summary</strong>, our approach enables the automatic detection of exposed and visible moated sites from satellite imagery, and could improve site discovery and documentation capabilities, opening new perspectives in larger geographic site units and even in civilization surveys.</p></div>","PeriodicalId":50254,"journal":{"name":"Journal of Archaeological Science","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moated site object detection using time series satellite imagery and an improved deep learning model in northeast Thailand\",\"authors\":\"\",\"doi\":\"10.1016/j.jas.2024.106070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Moated sites are crucial for revealing the formation of early civilizations and societies in Southeast Asia, and a significant amount of effort has been expended in investigating their distribution. This work is the first application of deep learning object detection methods to identify moated sites from time series satellite images. We presented multi-information fusion data (N-RGB) based on the fusion of multispectral and vegetation indices from Sentinel-2 time series imagery, generated a dataset of moated sites via the data augmentation method, and improved the YOLOv5s model by adding bidirectional feature pyramid network (BiFPN) structures for automatically identifying moated sites. <strong>The results</strong> indicate that the model trained with time series N-RGB data improves precision, recall, and mAP by more than 20.0% compared with single image data. The improved model was able to enhance the identification of small, moated sites and achieved 100% detection in a test of 100 moated sites. <strong>Ultimately</strong>, 629 targets were detected in northeast Thailand, with a false-negative rate of less than 3%, and 116 probable sites were identified. Among these, 6 probable sites were highly likely to be moated sites, as visually verified by high-resolution GEE imagery. <strong>In addition</strong>, among the targets automatically detected in other regions of continental Southeast Asia, the 5, 3, 2, 1, and 7 most probable sites were identified in Cambodia, Myanmar, Laos, Vietnam and other regions of Thailand, respectively. <strong>In summary</strong>, our approach enables the automatic detection of exposed and visible moated sites from satellite imagery, and could improve site discovery and documentation capabilities, opening new perspectives in larger geographic site units and even in civilization surveys.</p></div>\",\"PeriodicalId\":50254,\"journal\":{\"name\":\"Journal of Archaeological Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Archaeological Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305440324001389\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Archaeological Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305440324001389","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Moated site object detection using time series satellite imagery and an improved deep learning model in northeast Thailand
Moated sites are crucial for revealing the formation of early civilizations and societies in Southeast Asia, and a significant amount of effort has been expended in investigating their distribution. This work is the first application of deep learning object detection methods to identify moated sites from time series satellite images. We presented multi-information fusion data (N-RGB) based on the fusion of multispectral and vegetation indices from Sentinel-2 time series imagery, generated a dataset of moated sites via the data augmentation method, and improved the YOLOv5s model by adding bidirectional feature pyramid network (BiFPN) structures for automatically identifying moated sites. The results indicate that the model trained with time series N-RGB data improves precision, recall, and mAP by more than 20.0% compared with single image data. The improved model was able to enhance the identification of small, moated sites and achieved 100% detection in a test of 100 moated sites. Ultimately, 629 targets were detected in northeast Thailand, with a false-negative rate of less than 3%, and 116 probable sites were identified. Among these, 6 probable sites were highly likely to be moated sites, as visually verified by high-resolution GEE imagery. In addition, among the targets automatically detected in other regions of continental Southeast Asia, the 5, 3, 2, 1, and 7 most probable sites were identified in Cambodia, Myanmar, Laos, Vietnam and other regions of Thailand, respectively. In summary, our approach enables the automatic detection of exposed and visible moated sites from satellite imagery, and could improve site discovery and documentation capabilities, opening new perspectives in larger geographic site units and even in civilization surveys.
期刊介绍:
The Journal of Archaeological Science is aimed at archaeologists and scientists with particular interests in advancing the development and application of scientific techniques and methodologies to all areas of archaeology. This established monthly journal publishes focus articles, original research papers and major review articles, of wide archaeological significance. The journal provides an international forum for archaeologists and scientists from widely different scientific backgrounds who share a common interest in developing and applying scientific methods to inform major debates through improving the quality and reliability of scientific information derived from archaeological research.