Xiaoyang Qu , Xuxia Zhang , Jian Li , Shangwan Fu , Kejia Liu , Yangyang Xie , Liuyimei Yang , Hui Zhang , Tao Qi
{"title":"使用 HEHEHP/n-heptane 对醋酸溶液中的 RE(III)(RE = Eu、Gd 和 Tb)进行环保型非皂化溶剂萃取和分离工艺","authors":"Xiaoyang Qu , Xuxia Zhang , Jian Li , Shangwan Fu , Kejia Liu , Yangyang Xie , Liuyimei Yang , Hui Zhang , Tao Qi","doi":"10.1016/j.hydromet.2024.106386","DOIUrl":null,"url":null,"abstract":"<div><p>The key to achieving sustainable metal extraction development is to avoid the generation of high-salt wastewater from the source. Here, a new system for the extraction and separation of lanthanide elements Eu(III), Gd(III) and Tb(III) from the acetic acid solution using HEHEHP (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) was studied. The corresponding parameters including contact time, HEHEHP concentration, concentrations of rare earth metal ions and acetic acid in the initial solution, aqueous/organic phase volume ratio (R<sub>(A/O)</sub>), and temperature were considered to optimize the conditions for the separation of different rare earth elements. The results showed that the separation coefficients of Tb(III)/Gd(III) and Gd(III)/Eu(III) in the acetic acid system were approximately 6.2 and 1.7, with HEHEHP of 0.15 mol/L and R<sub>(A/O)</sub> of 2:1, and the extraction efficiency of RE(III) reached approximately 73.1%, which was higher than that in the hydrochloric acid and sulfuric acid systems. The mechanism associated with the extraction reaction was evaluated and discussed by the maximum loading capacity method, chromatographic analysis, and FT-IR spectrometric analysis. The mechanism followed a cation exchange reaction and acetic acid did not participate in the extraction process. The feasibility of the separation of Tb(III) from Eu(III) and Gd(<em>III</em>)was also given in terms of the separation coefficients between different elements at different extraction conditions. Since saponification is not necessary in the acetic acid extraction system, it can considerably reduce wastewater discharge to the ecological environment from the source.</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"230 ","pages":"Article 106386"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmentally friendly non-saponification solvent extraction and separation process for RE(III) (RE = Eu, Gd and Tb) in acetic acid solution using HEHEHP/n-heptane\",\"authors\":\"Xiaoyang Qu , Xuxia Zhang , Jian Li , Shangwan Fu , Kejia Liu , Yangyang Xie , Liuyimei Yang , Hui Zhang , Tao Qi\",\"doi\":\"10.1016/j.hydromet.2024.106386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The key to achieving sustainable metal extraction development is to avoid the generation of high-salt wastewater from the source. Here, a new system for the extraction and separation of lanthanide elements Eu(III), Gd(III) and Tb(III) from the acetic acid solution using HEHEHP (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) was studied. The corresponding parameters including contact time, HEHEHP concentration, concentrations of rare earth metal ions and acetic acid in the initial solution, aqueous/organic phase volume ratio (R<sub>(A/O)</sub>), and temperature were considered to optimize the conditions for the separation of different rare earth elements. The results showed that the separation coefficients of Tb(III)/Gd(III) and Gd(III)/Eu(III) in the acetic acid system were approximately 6.2 and 1.7, with HEHEHP of 0.15 mol/L and R<sub>(A/O)</sub> of 2:1, and the extraction efficiency of RE(III) reached approximately 73.1%, which was higher than that in the hydrochloric acid and sulfuric acid systems. The mechanism associated with the extraction reaction was evaluated and discussed by the maximum loading capacity method, chromatographic analysis, and FT-IR spectrometric analysis. The mechanism followed a cation exchange reaction and acetic acid did not participate in the extraction process. The feasibility of the separation of Tb(III) from Eu(III) and Gd(<em>III</em>)was also given in terms of the separation coefficients between different elements at different extraction conditions. Since saponification is not necessary in the acetic acid extraction system, it can considerably reduce wastewater discharge to the ecological environment from the source.</p></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"230 \",\"pages\":\"Article 106386\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X24001269\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001269","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Environmentally friendly non-saponification solvent extraction and separation process for RE(III) (RE = Eu, Gd and Tb) in acetic acid solution using HEHEHP/n-heptane
The key to achieving sustainable metal extraction development is to avoid the generation of high-salt wastewater from the source. Here, a new system for the extraction and separation of lanthanide elements Eu(III), Gd(III) and Tb(III) from the acetic acid solution using HEHEHP (2-ethylhexyl hydrogen-2-ethylhexylphosphonate) was studied. The corresponding parameters including contact time, HEHEHP concentration, concentrations of rare earth metal ions and acetic acid in the initial solution, aqueous/organic phase volume ratio (R(A/O)), and temperature were considered to optimize the conditions for the separation of different rare earth elements. The results showed that the separation coefficients of Tb(III)/Gd(III) and Gd(III)/Eu(III) in the acetic acid system were approximately 6.2 and 1.7, with HEHEHP of 0.15 mol/L and R(A/O) of 2:1, and the extraction efficiency of RE(III) reached approximately 73.1%, which was higher than that in the hydrochloric acid and sulfuric acid systems. The mechanism associated with the extraction reaction was evaluated and discussed by the maximum loading capacity method, chromatographic analysis, and FT-IR spectrometric analysis. The mechanism followed a cation exchange reaction and acetic acid did not participate in the extraction process. The feasibility of the separation of Tb(III) from Eu(III) and Gd(III)was also given in terms of the separation coefficients between different elements at different extraction conditions. Since saponification is not necessary in the acetic acid extraction system, it can considerably reduce wastewater discharge to the ecological environment from the source.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.