蝶形防粘放气阀的流场扭矩分析和阀板优化

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Jin Zhang , Wenlong Yin , Xu Wang , Shuwei Zheng , Lijiang Pan , Fugang Zhai
{"title":"蝶形防粘放气阀的流场扭矩分析和阀板优化","authors":"Jin Zhang ,&nbsp;Wenlong Yin ,&nbsp;Xu Wang ,&nbsp;Shuwei Zheng ,&nbsp;Lijiang Pan ,&nbsp;Fugang Zhai","doi":"10.1016/j.flowmeasinst.2024.102685","DOIUrl":null,"url":null,"abstract":"<div><p>The main function of the bleed valve (BV) is to release part of the air from the axial compressor to prevent the aero-engine from stalling and surging. The stuck fault of the BV seriously affects the stable operation and safety of the aero-engine. An anti-stick BV design incorporating an eccentric valve plate is proposed to mitigate the issues of valve sticking caused by contamination particles and deformation. To address the issue of large flow field torque (FFT) during the operation of the anti-stick BV, computational fluid dynamics (CFD) methods were employed to investigate the FFT across various opening angles and flow channel structures. The results indicate that the FFT is primarily induced by the asymmetry of pressure distribution at the surfaces of the valve plate. The main strategies to reduce the FFT resulting from the valve plate structure include increasing the maximum closing angle β, reducing the valve thickness, and shifting the inlet surface closer to the shaft. The optimized valve plate structure reduces the maximum FFT of the BV by 60.7 %. Experimental testing of the optimized prototype demonstrates significantly improved opening and closing characteristics.</p></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102685"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow field torque analysis and valve plate optimization of butterfly anti-stick bleed valve\",\"authors\":\"Jin Zhang ,&nbsp;Wenlong Yin ,&nbsp;Xu Wang ,&nbsp;Shuwei Zheng ,&nbsp;Lijiang Pan ,&nbsp;Fugang Zhai\",\"doi\":\"10.1016/j.flowmeasinst.2024.102685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main function of the bleed valve (BV) is to release part of the air from the axial compressor to prevent the aero-engine from stalling and surging. The stuck fault of the BV seriously affects the stable operation and safety of the aero-engine. An anti-stick BV design incorporating an eccentric valve plate is proposed to mitigate the issues of valve sticking caused by contamination particles and deformation. To address the issue of large flow field torque (FFT) during the operation of the anti-stick BV, computational fluid dynamics (CFD) methods were employed to investigate the FFT across various opening angles and flow channel structures. The results indicate that the FFT is primarily induced by the asymmetry of pressure distribution at the surfaces of the valve plate. The main strategies to reduce the FFT resulting from the valve plate structure include increasing the maximum closing angle β, reducing the valve thickness, and shifting the inlet surface closer to the shaft. The optimized valve plate structure reduces the maximum FFT of the BV by 60.7 %. Experimental testing of the optimized prototype demonstrates significantly improved opening and closing characteristics.</p></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102685\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624001651\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624001651","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

放气阀(BV)的主要功能是释放轴流压缩机中的部分空气,防止航空发动机熄火和喘振。BV 卡死故障严重影响着航空发动机的稳定运行和安全。我们提出了一种采用偏心阀板的防卡 BV 设计,以缓解由污染颗粒和变形引起的阀门卡滞问题。为解决防粘 BV 运行过程中的大流场力矩(FFT)问题,采用计算流体动力学(CFD)方法研究了不同开口角度和流道结构下的 FFT。结果表明,FFT 主要是由阀板表面压力分布的不对称性引起的。减少由阀板结构引起的 FFT 的主要策略包括增大最大关闭角 β、减小阀板厚度以及将入口表面移近轴。优化后的阀板结构将 BV 的最大 FFT 降低了 60.7%。对优化后的原型进行的实验测试表明,其开启和关闭特性均有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow field torque analysis and valve plate optimization of butterfly anti-stick bleed valve

The main function of the bleed valve (BV) is to release part of the air from the axial compressor to prevent the aero-engine from stalling and surging. The stuck fault of the BV seriously affects the stable operation and safety of the aero-engine. An anti-stick BV design incorporating an eccentric valve plate is proposed to mitigate the issues of valve sticking caused by contamination particles and deformation. To address the issue of large flow field torque (FFT) during the operation of the anti-stick BV, computational fluid dynamics (CFD) methods were employed to investigate the FFT across various opening angles and flow channel structures. The results indicate that the FFT is primarily induced by the asymmetry of pressure distribution at the surfaces of the valve plate. The main strategies to reduce the FFT resulting from the valve plate structure include increasing the maximum closing angle β, reducing the valve thickness, and shifting the inlet surface closer to the shaft. The optimized valve plate structure reduces the maximum FFT of the BV by 60.7 %. Experimental testing of the optimized prototype demonstrates significantly improved opening and closing characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow Measurement and Instrumentation
Flow Measurement and Instrumentation 工程技术-工程:机械
CiteScore
4.30
自引率
13.60%
发文量
123
审稿时长
6 months
期刊介绍: Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions. FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest: Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible. Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems. Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories. Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信