关于全球变暖的线性回归黑箱分析

{"title":"关于全球变暖的线性回归黑箱分析","authors":"","doi":"10.1016/j.heha.2024.100109","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates that the conclusions drawn from datasets on global temperature anomaly and atmospheric CO2 from NOAA can vary depending on the range of investigated periods. By examining the data from both macroscopic and microscopic perspectives, the study reveals that different levels of analysis can produce different outcomes from the same datasets based on statistics.</p></div>","PeriodicalId":73269,"journal":{"name":"Hygiene and environmental health advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773049224000229/pdfft?md5=8dea976b9745ec91f3c29a1401fbba02&pid=1-s2.0-S2773049224000229-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Black box analysis with linear regression on global warming\",\"authors\":\"\",\"doi\":\"10.1016/j.heha.2024.100109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper demonstrates that the conclusions drawn from datasets on global temperature anomaly and atmospheric CO2 from NOAA can vary depending on the range of investigated periods. By examining the data from both macroscopic and microscopic perspectives, the study reveals that different levels of analysis can produce different outcomes from the same datasets based on statistics.</p></div>\",\"PeriodicalId\":73269,\"journal\":{\"name\":\"Hygiene and environmental health advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773049224000229/pdfft?md5=8dea976b9745ec91f3c29a1401fbba02&pid=1-s2.0-S2773049224000229-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hygiene and environmental health advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773049224000229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hygiene and environmental health advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773049224000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文表明,从 NOAA 提供的全球温度异常和大气二氧化碳数据集得出的结论会因调查时段范围的不同而不同。通过从宏观和微观角度对数据进行研究,本研究揭示了不同层次的分析可以从基于统计的相同数据集中得出不同的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Black box analysis with linear regression on global warming

Black box analysis with linear regression on global warming

This paper demonstrates that the conclusions drawn from datasets on global temperature anomaly and atmospheric CO2 from NOAA can vary depending on the range of investigated periods. By examining the data from both macroscopic and microscopic perspectives, the study reveals that different levels of analysis can produce different outcomes from the same datasets based on statistics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hygiene and environmental health advances
Hygiene and environmental health advances Environmental Science (General)
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
38 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信