{"title":"用于组织工程的磁性纳米颗粒功能化生物材料:优势与挑战并存","authors":"V. Goranov","doi":"10.1016/j.bbiosy.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.</p></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"15 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666534424000138/pdfft?md5=e8e0a0af2e0a13268dd52d6ff3932c45&pid=1-s2.0-S2666534424000138-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges\",\"authors\":\"V. Goranov\",\"doi\":\"10.1016/j.bbiosy.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.</p></div>\",\"PeriodicalId\":72379,\"journal\":{\"name\":\"Biomaterials and biosystems\",\"volume\":\"15 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666534424000138/pdfft?md5=e8e0a0af2e0a13268dd52d6ff3932c45&pid=1-s2.0-S2666534424000138-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials and biosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666534424000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666534424000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges
The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.