Huifang Guo , Xi Chen , Hanwei Yao , Yinggang Zhang , Benjamin J.W. Mills , Kaibo Han , Shujuan Wu , Yida Yang , Zihao Wang , David B. Kemp
{"title":"量化白垩纪大洋缺氧事件 2 的有机碳埋藏模式","authors":"Huifang Guo , Xi Chen , Hanwei Yao , Yinggang Zhang , Benjamin J.W. Mills , Kaibo Han , Shujuan Wu , Yida Yang , Zihao Wang , David B. Kemp","doi":"10.1016/j.earscirev.2024.104903","DOIUrl":null,"url":null,"abstract":"<div><p>The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) is characterized by a marked positive carbon isotope excursion (CIE) recorded in global marine basins. This CIE results from a global-scale increase in organic matter burial, facilitated by high productivity and seawater deoxygenation. To date, however, the precise pattern of changes in the burial rate of organic matter through the event has not been well constrained. In this work, we present a compilation of data from 42 globally distributed OAE 2 sites, as well as organic carbon isotope (<span><math><mi>δ</mi></math></span><sup>13</sup>C<sub>org</sub>), total organic carbon (TOC), and trace element concentration data from a new OAE 2 interval in southern Tibet, China. In southern Tibet, the absence of redox-sensitive trace element enrichment through OAE 2 indicates prevailing oxic conditions. Organic carbon (OC) mass accumulation rate (MAR) at this site decreased from the lower part of the CIE to the upper part, in contrast to an approximate doubling of organic carbon MAR in the upper part observed globally. This result, coupled with detailed analysis of the compilation, shows that redox was a key factor controlling organic burial rates during OAE 2, with OC MAR scaling positively with increasing deoxygenation. Leveraging a biogeochemical model to simulate these data suggets that 5–20% of the seafloor became anoxic during OAE 2, and that this deoxygenation was accompanied by 100% to 200% increase in global seawater P concentration. Our findings indicate that during OAE 2, elevated nutrient levels may have resulted from enhanced recycling from sediments under reducing conditions, sustaining intensified primary production and subsequent organic carbon export and burial.</p></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"257 ","pages":"Article 104903"},"PeriodicalIF":10.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the pattern of organic carbon burial through Cretaceous Oceanic Anoxic Event 2\",\"authors\":\"Huifang Guo , Xi Chen , Hanwei Yao , Yinggang Zhang , Benjamin J.W. Mills , Kaibo Han , Shujuan Wu , Yida Yang , Zihao Wang , David B. Kemp\",\"doi\":\"10.1016/j.earscirev.2024.104903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) is characterized by a marked positive carbon isotope excursion (CIE) recorded in global marine basins. This CIE results from a global-scale increase in organic matter burial, facilitated by high productivity and seawater deoxygenation. To date, however, the precise pattern of changes in the burial rate of organic matter through the event has not been well constrained. In this work, we present a compilation of data from 42 globally distributed OAE 2 sites, as well as organic carbon isotope (<span><math><mi>δ</mi></math></span><sup>13</sup>C<sub>org</sub>), total organic carbon (TOC), and trace element concentration data from a new OAE 2 interval in southern Tibet, China. In southern Tibet, the absence of redox-sensitive trace element enrichment through OAE 2 indicates prevailing oxic conditions. Organic carbon (OC) mass accumulation rate (MAR) at this site decreased from the lower part of the CIE to the upper part, in contrast to an approximate doubling of organic carbon MAR in the upper part observed globally. This result, coupled with detailed analysis of the compilation, shows that redox was a key factor controlling organic burial rates during OAE 2, with OC MAR scaling positively with increasing deoxygenation. Leveraging a biogeochemical model to simulate these data suggets that 5–20% of the seafloor became anoxic during OAE 2, and that this deoxygenation was accompanied by 100% to 200% increase in global seawater P concentration. Our findings indicate that during OAE 2, elevated nutrient levels may have resulted from enhanced recycling from sediments under reducing conditions, sustaining intensified primary production and subsequent organic carbon export and burial.</p></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":\"257 \",\"pages\":\"Article 104903\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012825224002307\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224002307","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Quantifying the pattern of organic carbon burial through Cretaceous Oceanic Anoxic Event 2
The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) is characterized by a marked positive carbon isotope excursion (CIE) recorded in global marine basins. This CIE results from a global-scale increase in organic matter burial, facilitated by high productivity and seawater deoxygenation. To date, however, the precise pattern of changes in the burial rate of organic matter through the event has not been well constrained. In this work, we present a compilation of data from 42 globally distributed OAE 2 sites, as well as organic carbon isotope (13Corg), total organic carbon (TOC), and trace element concentration data from a new OAE 2 interval in southern Tibet, China. In southern Tibet, the absence of redox-sensitive trace element enrichment through OAE 2 indicates prevailing oxic conditions. Organic carbon (OC) mass accumulation rate (MAR) at this site decreased from the lower part of the CIE to the upper part, in contrast to an approximate doubling of organic carbon MAR in the upper part observed globally. This result, coupled with detailed analysis of the compilation, shows that redox was a key factor controlling organic burial rates during OAE 2, with OC MAR scaling positively with increasing deoxygenation. Leveraging a biogeochemical model to simulate these data suggets that 5–20% of the seafloor became anoxic during OAE 2, and that this deoxygenation was accompanied by 100% to 200% increase in global seawater P concentration. Our findings indicate that during OAE 2, elevated nutrient levels may have resulted from enhanced recycling from sediments under reducing conditions, sustaining intensified primary production and subsequent organic carbon export and burial.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.