Meiqi Wang , Tao Yang , Weiying Chen , Jian Bai , Peizeng Yang
{"title":"胡椒醛通过抑制α-突触核蛋白的聚集,保护神经元样细胞和视网膜色素上皮细胞(RPE)免受氧化应激和细胞凋亡的影响","authors":"Meiqi Wang , Tao Yang , Weiying Chen , Jian Bai , Peizeng Yang","doi":"10.1016/j.arabjc.2024.105982","DOIUrl":null,"url":null,"abstract":"<div><p>Protein fibrillation is a crucial process in the onset of several neurodegenerative and retinal disorders due to the formation of cytotoxic species. Because of their capacity to prevent protein aggregation, small molecules have the potential to be appointed as therapeutic agents. Here, we examined the inhibitory impacts of the piperonal as a carbaldehyde-derived compound on the fibrillation process of α-synuclein and underlying cytotoxicity against neuron-like (PC12) and human retinal pigment epithelial (RPE) (ARPE-19) cells. The results showed that the values of k<sub>app</sub> and lag time of α-synuclein were modulated with piperonal. Moreover, ANS fluorescence intensity analysis indicated that piperonal can inhibit the formation of a molten global (misfolded) state of α-synuclein, which is a necessary step in the formation of protein amyloid fibrils. Congo red absorption and circular dichroism spectroscopy also verified the inhibition of β-sheet structure formation after treatment of α-synuclein with piperonal. Furthermore, theoretical studies displayed that piperonal interacts with VAL40:HN, GLU35:O, VAL40, and LYS43 amino acid residues and forms a complex. In addition, cytotoxicity assays demonstrated that piperonal as a safe small molecule could mitigate the induced cytotoxicity by α-synuclein amyloids in PC12 and ARPE-19 cells through reduction of ROS and Bax/Bcl2 mRNA overexpression. Taken together, these outcomes showed that piperonal as a natural aldehyde compound can inhibit α-synuclein fibrillation and underlying cytotoxicity which may be developed for potential therapeutic applications <em>in vivo.</em></p></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 10","pages":"Article 105982"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878535224003848/pdfft?md5=dcaefb1459eb9c8a74d3b7d8d23410b0&pid=1-s2.0-S1878535224003848-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Piperonal protects neuron-like and retinalpigment epithelial (RPE) cells from oxidative stress and apoptosis through inhibition of α-synuclein aggregation\",\"authors\":\"Meiqi Wang , Tao Yang , Weiying Chen , Jian Bai , Peizeng Yang\",\"doi\":\"10.1016/j.arabjc.2024.105982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Protein fibrillation is a crucial process in the onset of several neurodegenerative and retinal disorders due to the formation of cytotoxic species. Because of their capacity to prevent protein aggregation, small molecules have the potential to be appointed as therapeutic agents. Here, we examined the inhibitory impacts of the piperonal as a carbaldehyde-derived compound on the fibrillation process of α-synuclein and underlying cytotoxicity against neuron-like (PC12) and human retinal pigment epithelial (RPE) (ARPE-19) cells. The results showed that the values of k<sub>app</sub> and lag time of α-synuclein were modulated with piperonal. Moreover, ANS fluorescence intensity analysis indicated that piperonal can inhibit the formation of a molten global (misfolded) state of α-synuclein, which is a necessary step in the formation of protein amyloid fibrils. Congo red absorption and circular dichroism spectroscopy also verified the inhibition of β-sheet structure formation after treatment of α-synuclein with piperonal. Furthermore, theoretical studies displayed that piperonal interacts with VAL40:HN, GLU35:O, VAL40, and LYS43 amino acid residues and forms a complex. In addition, cytotoxicity assays demonstrated that piperonal as a safe small molecule could mitigate the induced cytotoxicity by α-synuclein amyloids in PC12 and ARPE-19 cells through reduction of ROS and Bax/Bcl2 mRNA overexpression. Taken together, these outcomes showed that piperonal as a natural aldehyde compound can inhibit α-synuclein fibrillation and underlying cytotoxicity which may be developed for potential therapeutic applications <em>in vivo.</em></p></div>\",\"PeriodicalId\":249,\"journal\":{\"name\":\"Arabian Journal of Chemistry\",\"volume\":\"17 10\",\"pages\":\"Article 105982\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1878535224003848/pdfft?md5=dcaefb1459eb9c8a74d3b7d8d23410b0&pid=1-s2.0-S1878535224003848-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878535224003848\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224003848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Piperonal protects neuron-like and retinalpigment epithelial (RPE) cells from oxidative stress and apoptosis through inhibition of α-synuclein aggregation
Protein fibrillation is a crucial process in the onset of several neurodegenerative and retinal disorders due to the formation of cytotoxic species. Because of their capacity to prevent protein aggregation, small molecules have the potential to be appointed as therapeutic agents. Here, we examined the inhibitory impacts of the piperonal as a carbaldehyde-derived compound on the fibrillation process of α-synuclein and underlying cytotoxicity against neuron-like (PC12) and human retinal pigment epithelial (RPE) (ARPE-19) cells. The results showed that the values of kapp and lag time of α-synuclein were modulated with piperonal. Moreover, ANS fluorescence intensity analysis indicated that piperonal can inhibit the formation of a molten global (misfolded) state of α-synuclein, which is a necessary step in the formation of protein amyloid fibrils. Congo red absorption and circular dichroism spectroscopy also verified the inhibition of β-sheet structure formation after treatment of α-synuclein with piperonal. Furthermore, theoretical studies displayed that piperonal interacts with VAL40:HN, GLU35:O, VAL40, and LYS43 amino acid residues and forms a complex. In addition, cytotoxicity assays demonstrated that piperonal as a safe small molecule could mitigate the induced cytotoxicity by α-synuclein amyloids in PC12 and ARPE-19 cells through reduction of ROS and Bax/Bcl2 mRNA overexpression. Taken together, these outcomes showed that piperonal as a natural aldehyde compound can inhibit α-synuclein fibrillation and underlying cytotoxicity which may be developed for potential therapeutic applications in vivo.
期刊介绍:
The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry.
The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.