{"title":"碱金属热电转换器和热电发电机的协同整合:高效静态热电转换之路","authors":"","doi":"10.1016/j.tsep.2024.102879","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing the rising energy demand while minimizing environmental impacts is imperative in today’s energy landscape. This challenge necessitates the development of innovative, high-efficiency, and environmentally-friendly energy systems. This study investigates a hybrid static power generation system combining alkali metal thermal electric converters (AMTEC) and thermoelectric generators (TEG). A detailed parametric analysis is conducted through a comprehensive analytical model that integrates thermodynamics and electrochemistry. The results reveal that the synergistic integration of AMTEC and TEG enhances power generation by 67.1 % and improves efficiency by 27.1 % compared to standalone AMTEC systems. Consequently, the proposed system can achieve a maximum output power of 11.2 kW and an efficiency of 38.9 %. Additionally, the system demonstrates a 10 % load-following capability, highlighting its potential to meet fluctuating demand. Ultimately, the proposed system offers a scalable and effective solution for direct heat-to-electricity conversion.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451904924004979/pdfft?md5=ebdc9cd632f514c994d5d276eec7ef2c&pid=1-s2.0-S2451904924004979-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic integration of alkali metal thermal electric converters and thermoelectric generators: A path to high-efficiency, static conversion of heat to electricity\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Addressing the rising energy demand while minimizing environmental impacts is imperative in today’s energy landscape. This challenge necessitates the development of innovative, high-efficiency, and environmentally-friendly energy systems. This study investigates a hybrid static power generation system combining alkali metal thermal electric converters (AMTEC) and thermoelectric generators (TEG). A detailed parametric analysis is conducted through a comprehensive analytical model that integrates thermodynamics and electrochemistry. The results reveal that the synergistic integration of AMTEC and TEG enhances power generation by 67.1 % and improves efficiency by 27.1 % compared to standalone AMTEC systems. Consequently, the proposed system can achieve a maximum output power of 11.2 kW and an efficiency of 38.9 %. Additionally, the system demonstrates a 10 % load-following capability, highlighting its potential to meet fluctuating demand. Ultimately, the proposed system offers a scalable and effective solution for direct heat-to-electricity conversion.</p></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451904924004979/pdfft?md5=ebdc9cd632f514c994d5d276eec7ef2c&pid=1-s2.0-S2451904924004979-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924004979\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924004979","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Synergistic integration of alkali metal thermal electric converters and thermoelectric generators: A path to high-efficiency, static conversion of heat to electricity
Addressing the rising energy demand while minimizing environmental impacts is imperative in today’s energy landscape. This challenge necessitates the development of innovative, high-efficiency, and environmentally-friendly energy systems. This study investigates a hybrid static power generation system combining alkali metal thermal electric converters (AMTEC) and thermoelectric generators (TEG). A detailed parametric analysis is conducted through a comprehensive analytical model that integrates thermodynamics and electrochemistry. The results reveal that the synergistic integration of AMTEC and TEG enhances power generation by 67.1 % and improves efficiency by 27.1 % compared to standalone AMTEC systems. Consequently, the proposed system can achieve a maximum output power of 11.2 kW and an efficiency of 38.9 %. Additionally, the system demonstrates a 10 % load-following capability, highlighting its potential to meet fluctuating demand. Ultimately, the proposed system offers a scalable and effective solution for direct heat-to-electricity conversion.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.