Xu Xia , Yan Li , Jiao Li , Peihai Gong , Junlin Huang , Jikai Lu
{"title":"人工鱼礁中牡蛎壳填充对流场环境的影响及碳固定潜力评估","authors":"Xu Xia , Yan Li , Jiao Li , Peihai Gong , Junlin Huang , Jikai Lu","doi":"10.1016/j.seares.2024.102537","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial reefs are basic fishery facilities for marine habitat conservation and construction. In order to enhance fishery resources and restore the ecological environment in Laizhou Bay, where is an important fishing ground in China, an assembly-type oyster reef was designed based on the biological community, water depth and sea current in Laizhou Bay. This paper studied the effect of filling oyster shell in the assembly-type oyster reef on the flow field distribution by computational fluid dynamics (CFD), optimized the structure of reef, and presented the construction deployment of reef habitat and assessed potential of carbon fixation of oyster reefs. Indexes of upwelling, slow flow and vortex were chosen to describe the flow field effect of oyster reefs. The distribution characteristics of flow field under three types of filling oyster shell were analyzed: filling no shell (UAR), filling shells with an 83.6 void ratio (OAR), and filling shells with a 0 void ratio (FAR). The results showed that the upwelling, vortex and slow flow efficiency indicators of the OAR had obvious advantages compared with the other two filling methods, and the efficiency indicators of OAR with the spacing between basic elements of 280 m and deployment angle of 0° were higher than the others. Finally, according to the study result of filling method, spacing and deployment of oyster reef, the assessment showed that reefs could fix 2178.9 t carbon by themselves on the basis of national marine ranching demonstration area regulations in China.</p></div>","PeriodicalId":50056,"journal":{"name":"Journal of Sea Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1385110124000704/pdfft?md5=1f3a1c777c97f0c510828513e1cae15a&pid=1-s2.0-S1385110124000704-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of oyster shell filling in artificial reefs on flow field environment and assessing the potential of carbon fixation\",\"authors\":\"Xu Xia , Yan Li , Jiao Li , Peihai Gong , Junlin Huang , Jikai Lu\",\"doi\":\"10.1016/j.seares.2024.102537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial reefs are basic fishery facilities for marine habitat conservation and construction. In order to enhance fishery resources and restore the ecological environment in Laizhou Bay, where is an important fishing ground in China, an assembly-type oyster reef was designed based on the biological community, water depth and sea current in Laizhou Bay. This paper studied the effect of filling oyster shell in the assembly-type oyster reef on the flow field distribution by computational fluid dynamics (CFD), optimized the structure of reef, and presented the construction deployment of reef habitat and assessed potential of carbon fixation of oyster reefs. Indexes of upwelling, slow flow and vortex were chosen to describe the flow field effect of oyster reefs. The distribution characteristics of flow field under three types of filling oyster shell were analyzed: filling no shell (UAR), filling shells with an 83.6 void ratio (OAR), and filling shells with a 0 void ratio (FAR). The results showed that the upwelling, vortex and slow flow efficiency indicators of the OAR had obvious advantages compared with the other two filling methods, and the efficiency indicators of OAR with the spacing between basic elements of 280 m and deployment angle of 0° were higher than the others. Finally, according to the study result of filling method, spacing and deployment of oyster reef, the assessment showed that reefs could fix 2178.9 t carbon by themselves on the basis of national marine ranching demonstration area regulations in China.</p></div>\",\"PeriodicalId\":50056,\"journal\":{\"name\":\"Journal of Sea Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000704/pdfft?md5=1f3a1c777c97f0c510828513e1cae15a&pid=1-s2.0-S1385110124000704-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sea Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385110124000704\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sea Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385110124000704","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Effect of oyster shell filling in artificial reefs on flow field environment and assessing the potential of carbon fixation
Artificial reefs are basic fishery facilities for marine habitat conservation and construction. In order to enhance fishery resources and restore the ecological environment in Laizhou Bay, where is an important fishing ground in China, an assembly-type oyster reef was designed based on the biological community, water depth and sea current in Laizhou Bay. This paper studied the effect of filling oyster shell in the assembly-type oyster reef on the flow field distribution by computational fluid dynamics (CFD), optimized the structure of reef, and presented the construction deployment of reef habitat and assessed potential of carbon fixation of oyster reefs. Indexes of upwelling, slow flow and vortex were chosen to describe the flow field effect of oyster reefs. The distribution characteristics of flow field under three types of filling oyster shell were analyzed: filling no shell (UAR), filling shells with an 83.6 void ratio (OAR), and filling shells with a 0 void ratio (FAR). The results showed that the upwelling, vortex and slow flow efficiency indicators of the OAR had obvious advantages compared with the other two filling methods, and the efficiency indicators of OAR with the spacing between basic elements of 280 m and deployment angle of 0° were higher than the others. Finally, according to the study result of filling method, spacing and deployment of oyster reef, the assessment showed that reefs could fix 2178.9 t carbon by themselves on the basis of national marine ranching demonstration area regulations in China.
期刊介绍:
The Journal of Sea Research is an international and multidisciplinary periodical on marine research, with an emphasis on the functioning of marine ecosystems in coastal and shelf seas, including intertidal, estuarine and brackish environments. As several subdisciplines add to this aim, manuscripts are welcome from the fields of marine biology, marine chemistry, marine sedimentology and physical oceanography, provided they add to the understanding of ecosystem processes.