用于克尔型非线性介质中麦克斯韦方程的无条件稳定修正有限元方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Meng Chen , Linghua Kong , Yiru Liang , Wei Wang , Wei Yang
{"title":"用于克尔型非线性介质中麦克斯韦方程的无条件稳定修正有限元方法","authors":"Meng Chen ,&nbsp;Linghua Kong ,&nbsp;Yiru Liang ,&nbsp;Wei Wang ,&nbsp;Wei Yang","doi":"10.1016/j.cam.2024.116247","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to construct a newly efficient finite element method which named as modified finite element method, for Maxwell’s equation in Kerr-type nonlinear media. Because the efficient unconditional stable alternative direction implicit method can’t extend to the Maxwell’s equations in Kerr-type nonlinear media (the difficulty will be discussed in section 3.1), we design the modified method to construct an efficient unconditional stable scheme for Maxwell’s equations in Kerr-type nonlinear media. Furthermore, combined with the direct method, we construct a more efficient direct modified scheme. Comparisons of the efficiency, stability, convergence rate for our modified method and classical explicit leapfrog method were done by theoretical analysis and numerical experiments. The modified method is unconditional stable and its efficiency is not less than leapfrog method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unconditional stable modified finite element methods for Maxwell’s equation in Kerr-type nonlinear media\",\"authors\":\"Meng Chen ,&nbsp;Linghua Kong ,&nbsp;Yiru Liang ,&nbsp;Wei Wang ,&nbsp;Wei Yang\",\"doi\":\"10.1016/j.cam.2024.116247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to construct a newly efficient finite element method which named as modified finite element method, for Maxwell’s equation in Kerr-type nonlinear media. Because the efficient unconditional stable alternative direction implicit method can’t extend to the Maxwell’s equations in Kerr-type nonlinear media (the difficulty will be discussed in section 3.1), we design the modified method to construct an efficient unconditional stable scheme for Maxwell’s equations in Kerr-type nonlinear media. Furthermore, combined with the direct method, we construct a more efficient direct modified scheme. Comparisons of the efficiency, stability, convergence rate for our modified method and classical explicit leapfrog method were done by theoretical analysis and numerical experiments. The modified method is unconditional stable and its efficiency is not less than leapfrog method.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724004965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是针对 Kerr 型非线性介质中的麦克斯韦方程构建一种新的高效有限元方法,并将其命名为修正有限元方法。由于高效的无条件稳定替代方向隐式方法无法扩展到 Kerr 型非线性介质中的麦克斯韦方程(3.1 节将讨论该困难),我们设计了修正方法,以构建 Kerr 型非线性介质中麦克斯韦方程的高效无条件稳定方案。此外,结合直接方法,我们构建了一种更高效的直接修正方案。通过理论分析和数值实验,比较了我们的修正方法和经典显式跃迁法的效率、稳定性和收敛速率。修正后的方法具有无条件稳定性,其效率不低于跃迁法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unconditional stable modified finite element methods for Maxwell’s equation in Kerr-type nonlinear media

The purpose of this paper is to construct a newly efficient finite element method which named as modified finite element method, for Maxwell’s equation in Kerr-type nonlinear media. Because the efficient unconditional stable alternative direction implicit method can’t extend to the Maxwell’s equations in Kerr-type nonlinear media (the difficulty will be discussed in section 3.1), we design the modified method to construct an efficient unconditional stable scheme for Maxwell’s equations in Kerr-type nonlinear media. Furthermore, combined with the direct method, we construct a more efficient direct modified scheme. Comparisons of the efficiency, stability, convergence rate for our modified method and classical explicit leapfrog method were done by theoretical analysis and numerical experiments. The modified method is unconditional stable and its efficiency is not less than leapfrog method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信