{"title":"有限应变框架下速率和路径依赖性异质材料的物理递归神经网络","authors":"","doi":"10.1016/j.mechmat.2024.105145","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated. The proposed model benefits from the physics-based knowledge contained in the constitutive models used in the full-order micromodel by embedding the material models in a neural network. Following previous developments, this paper extends the applicability of the physically recurrent neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into a set of deformation gradients serving as input to the embedded constitutive models. These constitutive models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the internal variables of the history-dependent constitutive models naturally provide physics-based memory for the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders of magnitude with respect to the runtime of the original micromodel are obtained.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167663624002370/pdfft?md5=f416d4ac98b69e1ba218802ea36b6971&pid=1-s2.0-S0167663624002370-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmat.2024.105145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated. The proposed model benefits from the physics-based knowledge contained in the constitutive models used in the full-order micromodel by embedding the material models in a neural network. Following previous developments, this paper extends the applicability of the physically recurrent neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into a set of deformation gradients serving as input to the embedded constitutive models. These constitutive models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the internal variables of the history-dependent constitutive models naturally provide physics-based memory for the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders of magnitude with respect to the runtime of the original micromodel are obtained.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167663624002370/pdfft?md5=f416d4ac98b69e1ba218802ea36b6971&pid=1-s2.0-S0167663624002370-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624002370\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002370","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework
In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated. The proposed model benefits from the physics-based knowledge contained in the constitutive models used in the full-order micromodel by embedding the material models in a neural network. Following previous developments, this paper extends the applicability of the physically recurrent neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into a set of deformation gradients serving as input to the embedded constitutive models. These constitutive models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the internal variables of the history-dependent constitutive models naturally provide physics-based memory for the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders of magnitude with respect to the runtime of the original micromodel are obtained.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.