{"title":"含有固定阴离子的聚合物电解质的充电依赖性电化学机械耦合行为","authors":"","doi":"10.1016/j.mechmat.2024.105143","DOIUrl":null,"url":null,"abstract":"<div><p>Theoretical models have been developed to explore the electrodeposition stability between Li metal and salt-doped polymer electrolytes. However, there is still limited investigation on the coupling behavior between mechanics and electrochemistry in those novel nano-structured polymers with immobilized anions. In this work, we employ a multiphysics modeling framework to predict the electro-chemo-mechanical behavior of polymer electrolytes containing immobilized anions. We analyze the impacts of charging conditions, stress coupling and the immobilization of anions on their ion transport, electrical and mechanical properties during charging. Strengthening stress coupling is demonstrated to improve the diffusion-driven stability of electrodeposition, by enhancing limiting applied current densities. Compared with stress coupling, immobilizing anions surprisingly sustains the non-zero interfacial Li<sup>+</sup>-ion concentrations even at high applied currents, thereby mitigating the potential diffusion-driven instability of electrodeposition. Both stress/strain and overpotentials also get reduces with increasing the concentrations of immobilized anions. This theoretical work provides insights into the strategy of redesigning polymer electrolytes, and also lays foundation for the multiphysics modeling of electrodes and full-cell battery systems.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167663624002357/pdfft?md5=b357c0c440e5e29ee90efb9680e94acd&pid=1-s2.0-S0167663624002357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Charging dependent electro-chemo-mechanical coupling behavior of polymer electrolytes containing immobilized anions\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmat.2024.105143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Theoretical models have been developed to explore the electrodeposition stability between Li metal and salt-doped polymer electrolytes. However, there is still limited investigation on the coupling behavior between mechanics and electrochemistry in those novel nano-structured polymers with immobilized anions. In this work, we employ a multiphysics modeling framework to predict the electro-chemo-mechanical behavior of polymer electrolytes containing immobilized anions. We analyze the impacts of charging conditions, stress coupling and the immobilization of anions on their ion transport, electrical and mechanical properties during charging. Strengthening stress coupling is demonstrated to improve the diffusion-driven stability of electrodeposition, by enhancing limiting applied current densities. Compared with stress coupling, immobilizing anions surprisingly sustains the non-zero interfacial Li<sup>+</sup>-ion concentrations even at high applied currents, thereby mitigating the potential diffusion-driven instability of electrodeposition. Both stress/strain and overpotentials also get reduces with increasing the concentrations of immobilized anions. This theoretical work provides insights into the strategy of redesigning polymer electrolytes, and also lays foundation for the multiphysics modeling of electrodes and full-cell battery systems.</p></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167663624002357/pdfft?md5=b357c0c440e5e29ee90efb9680e94acd&pid=1-s2.0-S0167663624002357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663624002357\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002357","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical models have been developed to explore the electrodeposition stability between Li metal and salt-doped polymer electrolytes. However, there is still limited investigation on the coupling behavior between mechanics and electrochemistry in those novel nano-structured polymers with immobilized anions. In this work, we employ a multiphysics modeling framework to predict the electro-chemo-mechanical behavior of polymer electrolytes containing immobilized anions. We analyze the impacts of charging conditions, stress coupling and the immobilization of anions on their ion transport, electrical and mechanical properties during charging. Strengthening stress coupling is demonstrated to improve the diffusion-driven stability of electrodeposition, by enhancing limiting applied current densities. Compared with stress coupling, immobilizing anions surprisingly sustains the non-zero interfacial Li+-ion concentrations even at high applied currents, thereby mitigating the potential diffusion-driven instability of electrodeposition. Both stress/strain and overpotentials also get reduces with increasing the concentrations of immobilized anions. This theoretical work provides insights into the strategy of redesigning polymer electrolytes, and also lays foundation for the multiphysics modeling of electrodes and full-cell battery systems.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.