基于内容预测和深度强化学习的车载边缘云计算内容缓存优化解决方案

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lin Zhu, Bingxian Li, Long Tan
{"title":"基于内容预测和深度强化学习的车载边缘云计算内容缓存优化解决方案","authors":"Lin Zhu,&nbsp;Bingxian Li,&nbsp;Long Tan","doi":"10.1016/j.adhoc.2024.103643","DOIUrl":null,"url":null,"abstract":"<div><p>In conventional studies on vehicular edge computing, researchers frequently overlook the high-speed mobility of vehicles and the dynamic nature of the vehicular edge environment. Moreover, when employing deep reinforcement learning to address vehicular edge challenges, insufficient attention is given to the potential issue of the algorithm converging to a local optimal solution. This paper presents a content caching solution tailored for vehicular edge cloud computing, integrating content prediction and deep reinforcement learning techniques. Given the swift mobility of vehicles and the ever-changing nature of the vehicular edge environment, the study proposes a content prediction model based on Informer. Leveraging the Informer prediction model, the system anticipates the vehicular edge environment dynamics, thereby informing the caching of vehicle task content. Acknowledging the diverse time scales involved in policy decisions such as content updating, vehicle scheduling, and bandwidth allocation, the paper advocates a dual time-scale Markov modeling approach. Moreover, to address the local optimality issue inherent in the A3C algorithm, an enhanced A3C algorithm is introduced, incorporating an <span><math><mi>ɛ</mi></math></span>-greedy strategy to promote exploration. Recognizing the potential limitations posed by a fixed exploration rate <span><math><mi>ɛ</mi></math></span>, a dynamic baseline mechanism is proposed for updating <span><math><mi>ɛ</mi></math></span> dynamically. Experimental findings demonstrate that compared to alternative content caching approaches, the proposed vehicle edge computing content caching solution substantially mitigates content access costs. To support research in this area, we have publicly released the source code and pre-trained models at <span><span>https://github.com/JYAyyyyyy/Informer.git</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicular edge cloud computing content caching optimization solution based on content prediction and deep reinforcement learning\",\"authors\":\"Lin Zhu,&nbsp;Bingxian Li,&nbsp;Long Tan\",\"doi\":\"10.1016/j.adhoc.2024.103643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In conventional studies on vehicular edge computing, researchers frequently overlook the high-speed mobility of vehicles and the dynamic nature of the vehicular edge environment. Moreover, when employing deep reinforcement learning to address vehicular edge challenges, insufficient attention is given to the potential issue of the algorithm converging to a local optimal solution. This paper presents a content caching solution tailored for vehicular edge cloud computing, integrating content prediction and deep reinforcement learning techniques. Given the swift mobility of vehicles and the ever-changing nature of the vehicular edge environment, the study proposes a content prediction model based on Informer. Leveraging the Informer prediction model, the system anticipates the vehicular edge environment dynamics, thereby informing the caching of vehicle task content. Acknowledging the diverse time scales involved in policy decisions such as content updating, vehicle scheduling, and bandwidth allocation, the paper advocates a dual time-scale Markov modeling approach. Moreover, to address the local optimality issue inherent in the A3C algorithm, an enhanced A3C algorithm is introduced, incorporating an <span><math><mi>ɛ</mi></math></span>-greedy strategy to promote exploration. Recognizing the potential limitations posed by a fixed exploration rate <span><math><mi>ɛ</mi></math></span>, a dynamic baseline mechanism is proposed for updating <span><math><mi>ɛ</mi></math></span> dynamically. Experimental findings demonstrate that compared to alternative content caching approaches, the proposed vehicle edge computing content caching solution substantially mitigates content access costs. To support research in this area, we have publicly released the source code and pre-trained models at <span><span>https://github.com/JYAyyyyyy/Informer.git</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002543\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002543","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在有关车辆边缘计算的传统研究中,研究人员经常忽视车辆的高速流动性和车辆边缘环境的动态性质。此外,在利用深度强化学习解决车辆边缘挑战时,对算法收敛到局部最优解的潜在问题关注不够。本文结合内容预测和深度强化学习技术,提出了一种为车载边缘云计算量身定制的内容缓存解决方案。考虑到车辆的快速移动性和车辆边缘环境的不断变化,本研究提出了一种基于 Informer 的内容预测模型。利用 Informer 预测模型,系统可以预测车辆边缘环境的动态,从而为车辆任务内容的缓存提供信息。考虑到内容更新、车辆调度和带宽分配等策略决策涉及不同的时间尺度,本文主张采用双时间尺度马尔可夫建模方法。此外,为了解决 A3C 算法中固有的局部最优性问题,本文引入了一种增强型 A3C 算法,其中包含一种促进探索的ɛ 贪婪策略。考虑到固定探索率ɛ 可能带来的限制,我们提出了一种动态基线机制,用于动态更新ɛ。实验结果表明,与其他内容缓存方法相比,所提出的车载边缘计算内容缓存解决方案大大降低了内容访问成本。为了支持这一领域的研究,我们在 https://github.com/JYAyyyyyy/Informer.git 上公开发布了源代码和预训练模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicular edge cloud computing content caching optimization solution based on content prediction and deep reinforcement learning

In conventional studies on vehicular edge computing, researchers frequently overlook the high-speed mobility of vehicles and the dynamic nature of the vehicular edge environment. Moreover, when employing deep reinforcement learning to address vehicular edge challenges, insufficient attention is given to the potential issue of the algorithm converging to a local optimal solution. This paper presents a content caching solution tailored for vehicular edge cloud computing, integrating content prediction and deep reinforcement learning techniques. Given the swift mobility of vehicles and the ever-changing nature of the vehicular edge environment, the study proposes a content prediction model based on Informer. Leveraging the Informer prediction model, the system anticipates the vehicular edge environment dynamics, thereby informing the caching of vehicle task content. Acknowledging the diverse time scales involved in policy decisions such as content updating, vehicle scheduling, and bandwidth allocation, the paper advocates a dual time-scale Markov modeling approach. Moreover, to address the local optimality issue inherent in the A3C algorithm, an enhanced A3C algorithm is introduced, incorporating an ɛ-greedy strategy to promote exploration. Recognizing the potential limitations posed by a fixed exploration rate ɛ, a dynamic baseline mechanism is proposed for updating ɛ dynamically. Experimental findings demonstrate that compared to alternative content caching approaches, the proposed vehicle edge computing content caching solution substantially mitigates content access costs. To support research in this area, we have publicly released the source code and pre-trained models at https://github.com/JYAyyyyyy/Informer.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信