{"title":"利用 X 射线计算机断层扫描检测碳酚醛复合材料中的热解前沿","authors":"Cameron E. Brewer, Savio J. Poovathingal","doi":"10.1016/j.compositesa.2024.108444","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon phenolic composites are used as thermal protection systems (TPS) materials on space capsules to protect them from the hot aerothermal environment. The phenolic resin in the composite material decomposes (pyrolyzes) at low temperatures resulting in a pyrolysis front within the material. The detection of the pyrolysis front after exposure to heat has historically been achieved by physically sectioning cross-sections of the material. We combine the phase contrast retrieval method to reconstruct x-ray computed tomography scans along with image convolution to identify the pyrolysis front in carbon phenolic composites. Unlike the standard filtered back projection method that captures only the carbon phase, the phase contrast retrieval method uses both the attenuation coefficients and refractive indices to illuminate all three phases (carbon, resin, and voids) of carbon phenolic composites. Image convolution is applied on scans reconstructed using the phase contrast retrieval method to develop a density map of the composite to locate the pyrolysis front. The analysis is performed on a sample of phenolic impregnated carbon ablator that was tested in an arc-jet facility. For the sample analyzed, the depth of the pyrolysis front from the surface of the sample is calculated to be 2.150 ± 0.148 mm. Although the proposed approach is applied to detect the pyrolysis front, the tools can be used to illuminate the structure of any carbon phenolic composite, and we propose the use of the phase contrast retrieval method as a methodological standard to analyze carbon phenolic composites used on space capsules.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"187 ","pages":"Article 108444"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis front detection in carbon phenolic composites using x-ray computed tomography\",\"authors\":\"Cameron E. Brewer, Savio J. Poovathingal\",\"doi\":\"10.1016/j.compositesa.2024.108444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon phenolic composites are used as thermal protection systems (TPS) materials on space capsules to protect them from the hot aerothermal environment. The phenolic resin in the composite material decomposes (pyrolyzes) at low temperatures resulting in a pyrolysis front within the material. The detection of the pyrolysis front after exposure to heat has historically been achieved by physically sectioning cross-sections of the material. We combine the phase contrast retrieval method to reconstruct x-ray computed tomography scans along with image convolution to identify the pyrolysis front in carbon phenolic composites. Unlike the standard filtered back projection method that captures only the carbon phase, the phase contrast retrieval method uses both the attenuation coefficients and refractive indices to illuminate all three phases (carbon, resin, and voids) of carbon phenolic composites. Image convolution is applied on scans reconstructed using the phase contrast retrieval method to develop a density map of the composite to locate the pyrolysis front. The analysis is performed on a sample of phenolic impregnated carbon ablator that was tested in an arc-jet facility. For the sample analyzed, the depth of the pyrolysis front from the surface of the sample is calculated to be 2.150 ± 0.148 mm. Although the proposed approach is applied to detect the pyrolysis front, the tools can be used to illuminate the structure of any carbon phenolic composite, and we propose the use of the phase contrast retrieval method as a methodological standard to analyze carbon phenolic composites used on space capsules.</p></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"187 \",\"pages\":\"Article 108444\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X2400441X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X2400441X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
摘要
碳酚醛复合材料被用作太空舱的热保护系统(TPS)材料,以保护太空舱免受高温气热环境的影响。复合材料中的酚醛树脂会在低温下分解(热解),从而在材料内部形成热解前沿。对受热后热解前沿的检测历来是通过对材料横截面进行物理切片来实现的。我们将相位对比检索法与 X 射线计算机断层扫描重建法和图像卷积法相结合,以识别碳酚醛复合材料中的热解前沿。与只捕捉碳相的标准滤波背投影法不同,相位对比检索法同时使用衰减系数和折射率来照亮碳酚醛复合材料的所有三相(碳、树脂和空隙)。在使用相位对比检索法重建的扫描图像上应用图像卷积,绘制出复合材料的密度图,以确定热解前沿的位置。分析是在电弧喷射设备中测试的酚醛浸渍碳烧蚀器样品上进行的。对于所分析的样品,计算得出热解前沿距离样品表面的深度为 2.150 ± 0.148 毫米。虽然所提出的方法用于检测热解前沿,但这些工具可用于阐明任何碳酚醛复合材料的结构,我们建议将相衬检索法作为分析太空舱所用碳酚醛复合材料的方法标准。
Pyrolysis front detection in carbon phenolic composites using x-ray computed tomography
Carbon phenolic composites are used as thermal protection systems (TPS) materials on space capsules to protect them from the hot aerothermal environment. The phenolic resin in the composite material decomposes (pyrolyzes) at low temperatures resulting in a pyrolysis front within the material. The detection of the pyrolysis front after exposure to heat has historically been achieved by physically sectioning cross-sections of the material. We combine the phase contrast retrieval method to reconstruct x-ray computed tomography scans along with image convolution to identify the pyrolysis front in carbon phenolic composites. Unlike the standard filtered back projection method that captures only the carbon phase, the phase contrast retrieval method uses both the attenuation coefficients and refractive indices to illuminate all three phases (carbon, resin, and voids) of carbon phenolic composites. Image convolution is applied on scans reconstructed using the phase contrast retrieval method to develop a density map of the composite to locate the pyrolysis front. The analysis is performed on a sample of phenolic impregnated carbon ablator that was tested in an arc-jet facility. For the sample analyzed, the depth of the pyrolysis front from the surface of the sample is calculated to be 2.150 ± 0.148 mm. Although the proposed approach is applied to detect the pyrolysis front, the tools can be used to illuminate the structure of any carbon phenolic composite, and we propose the use of the phase contrast retrieval method as a methodological standard to analyze carbon phenolic composites used on space capsules.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.