可再生能源直流离网制氢系统的动态能量转换与传输模型研究

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"可再生能源直流离网制氢系统的动态能量转换与传输模型研究","authors":"","doi":"10.1016/j.ijepes.2024.110221","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear, which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems, based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation, an energy hub model for the hydrogen production system is established, yielding the electrical, thermal, and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time, the energy flow at each time node within the hydrogen production system is computed, revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed, revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally, a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy, providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.</p></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142061524004423/pdfft?md5=5769f1dac9ba8d3ddd7821788f039439&pid=1-s2.0-S0142061524004423-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research on the dynamic energy conversion and transmission model of renewable energy DC off-grid hydrogen system\",\"authors\":\"\",\"doi\":\"10.1016/j.ijepes.2024.110221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear, which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems, based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation, an energy hub model for the hydrogen production system is established, yielding the electrical, thermal, and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time, the energy flow at each time node within the hydrogen production system is computed, revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed, revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally, a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy, providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.</p></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004423/pdfft?md5=5769f1dac9ba8d3ddd7821788f039439&pid=1-s2.0-S0142061524004423-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524004423\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524004423","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源直流离网制氢系统中电-氢-热多种能量流之间的动态响应特性具有高度耦合性和非线性,导致其能量转换和传输规律的复杂性。本研究提出了一个模型来描述此类系统特有的动态非线性能量转换和传输规律。该模型根据直流离网制氢系统中各子系统的运行特性,为多异构能量流子系统开发了一个非线性导纳框架和一个转换特性矩阵。在此基础上,建立了制氢系统的能源枢纽模型,得出了每个子系统的电能、热能和氢能输出及其各自的转换效率。通过时间离散化,可以计算制氢系统中每个时间节点的能量流,从而揭示系统的动态能量传递模式。实验使用了中国东部特定地点的实测风速和辐照度数据。对选定典型日的结果进行了分析和讨论,发现子系统特征呈现非线性变化规律。这凸显了传统模型在准确捕捉这些动态变化方面的局限性。最后,构建了一个包含实用控制方法的仿真平台,以验证模型的准确性。验证结果表明,该模型具有很高的准确性,为进一步深入分析直流离网制氢系统提供了坚实的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the dynamic energy conversion and transmission model of renewable energy DC off-grid hydrogen system

The dynamic response characteristics between the multiple energy flows of electricity-hydrogen-heat in the renewable energy DC off-grid hydrogen production system are highly coupled and nonlinear, which leads to the complexity of its energy conversion and transmission law. This study proposes a model to describe the dynamic nonlinear energy conversion and transmission laws specific to such systems. The model develops a nonlinear admittance framework and a conversion characteristic matrix for multi-heterogeneous energy flow subsystems, based on the operational characteristics of each subsystem within the DC off-grid hydrogen production system. Building upon this foundation, an energy hub model for the hydrogen production system is established, yielding the electrical, thermal, and hydrogen energy outputs along with their respective conversion efficiencies for each subsystem. By discretizing time, the energy flow at each time node within the hydrogen production system is computed, revealing the system’s dynamic energy transfer patterns. Experiments were conducted using measured wind speed and irradiance data from a specific location in eastern China. Results from selected typical days were analyzed and discussed, revealing that subsystem characteristics exhibit nonlinear variation patterns. This highlights the limitations of traditional models in accurately capturing these dynamics. Finally, a simulation platform incorporating practical control methods was constructed to validate the model’s accuracy. Validation results demonstrate that the model possesses high accuracy, providing a solid theoretical foundation for further in-depth analysis of DC off-grid hydrogen production systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信