利用浸没式光催化膜反应器处理含油废水

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Hassan G. Gomaa, Wen Zhou, Jesse Zhu
{"title":"利用浸没式光催化膜反应器处理含油废水","authors":"Hassan G. Gomaa,&nbsp;Wen Zhou,&nbsp;Jesse Zhu","doi":"10.1016/j.partic.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>The increase in oily contaminated wastewater emissions has made it essential to develop efficient treatment approaches to mitigate its negative impact on the ecosystem and human health. In this research, a suspended catalyst photocatalytic membrane reactor (SPMR) is developed for simultaneous oil-water separation as well as pollutants degradation using ZnO as a photocatalyst and a submerged LED-UV light. A composite membrane unit was used in the reactor that was made of a polymeric layer and a superhydrophilic (SHPI) underwater oleophobic layer. The later was prepared by attaching ZnO nanoparticles (NP) on stainless steel mesh using the spraying method. The pure water flux of the composite membrane was comparable to that of the pristine polymeric membrane indicating minor resistance of the SHPI layer. For oil-water emulsion, water flux ∼1332 L m<sup>−2</sup> h<sup>−1</sup> was achieved at 20 kPa transmembrane pressure (TMP) with ∼99% oil separation efficiency. Using methylene blue dye (MB) decolourizations to assess simultaneous oil-water separation and pollutant degradation efficiencies, close to 86% dye decolourization and near complete oil water separation was achieved. The results suggest a promising potential of the proposed design for treatment of contaminated oily wastewater.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 252-260"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of oily wastewater using submerged photocatalytic membrane reactor\",\"authors\":\"Hassan G. Gomaa,&nbsp;Wen Zhou,&nbsp;Jesse Zhu\",\"doi\":\"10.1016/j.partic.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increase in oily contaminated wastewater emissions has made it essential to develop efficient treatment approaches to mitigate its negative impact on the ecosystem and human health. In this research, a suspended catalyst photocatalytic membrane reactor (SPMR) is developed for simultaneous oil-water separation as well as pollutants degradation using ZnO as a photocatalyst and a submerged LED-UV light. A composite membrane unit was used in the reactor that was made of a polymeric layer and a superhydrophilic (SHPI) underwater oleophobic layer. The later was prepared by attaching ZnO nanoparticles (NP) on stainless steel mesh using the spraying method. The pure water flux of the composite membrane was comparable to that of the pristine polymeric membrane indicating minor resistance of the SHPI layer. For oil-water emulsion, water flux ∼1332 L m<sup>−2</sup> h<sup>−1</sup> was achieved at 20 kPa transmembrane pressure (TMP) with ∼99% oil separation efficiency. Using methylene blue dye (MB) decolourizations to assess simultaneous oil-water separation and pollutant degradation efficiencies, close to 86% dye decolourization and near complete oil water separation was achieved. The results suggest a promising potential of the proposed design for treatment of contaminated oily wastewater.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"94 \",\"pages\":\"Pages 252-260\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124001640\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001640","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着含油污染废水排放量的增加,必须开发高效的处理方法,以减轻其对生态系统和人类健康的负面影响。本研究开发了一种悬浮催化剂光催化膜反应器(SPMR),利用 ZnO 作为光催化剂和浸没式 LED-UV 灯同时进行油水分离和污染物降解。反应器中使用的复合膜单元由聚合物层和超亲水(SHPI)水下疏油层组成。聚合物层是由聚合物层和超亲水(SHPI)水下疏油层组成,后者是通过喷涂方法将氧化锌纳米颗粒(NP)附着在不锈钢网上制备而成。复合膜的纯水通量与原始聚合物膜相当,表明 SHPI 层的阻力较小。对于油水乳化液,在 20 kPa 跨膜压力(TMP)下,水通量达到 1332 L m-2 h-1,油分离效率达到 99%。利用亚甲基蓝染料(MB)脱醇来评估同步油水分离和污染物降解效率,结果显示染料脱醇率接近 86%,油水分离接近完全。这些结果表明,拟议设计在处理含油污染废水方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Treatment of oily wastewater using submerged photocatalytic membrane reactor

Treatment of oily wastewater using submerged photocatalytic membrane reactor

The increase in oily contaminated wastewater emissions has made it essential to develop efficient treatment approaches to mitigate its negative impact on the ecosystem and human health. In this research, a suspended catalyst photocatalytic membrane reactor (SPMR) is developed for simultaneous oil-water separation as well as pollutants degradation using ZnO as a photocatalyst and a submerged LED-UV light. A composite membrane unit was used in the reactor that was made of a polymeric layer and a superhydrophilic (SHPI) underwater oleophobic layer. The later was prepared by attaching ZnO nanoparticles (NP) on stainless steel mesh using the spraying method. The pure water flux of the composite membrane was comparable to that of the pristine polymeric membrane indicating minor resistance of the SHPI layer. For oil-water emulsion, water flux ∼1332 L m−2 h−1 was achieved at 20 kPa transmembrane pressure (TMP) with ∼99% oil separation efficiency. Using methylene blue dye (MB) decolourizations to assess simultaneous oil-water separation and pollutant degradation efficiencies, close to 86% dye decolourization and near complete oil water separation was achieved. The results suggest a promising potential of the proposed design for treatment of contaminated oily wastewater.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信