{"title":"具有物理应用价值的非扩散有源标量方程的错/好摆性","authors":"Susan Friedlander , Anthony Suen , Fei Wang","doi":"10.1016/j.jde.2024.08.062","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator <strong>T</strong> that is singular of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. For <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we prove well-posedness in Gevrey spaces <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>)</mo></math></span>, while for <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and further conditions on <strong>T</strong> we prove ill-posedness in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for suitable <em>s</em>. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ill/well-posedness of non-diffusive active scalar equations with physical applications\",\"authors\":\"Susan Friedlander , Anthony Suen , Fei Wang\",\"doi\":\"10.1016/j.jde.2024.08.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator <strong>T</strong> that is singular of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. For <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we prove well-posedness in Gevrey spaces <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>)</mo></math></span>, while for <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and further conditions on <strong>T</strong> we prove ill-posedness in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for suitable <em>s</em>. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005527\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了一类非扩散有源标量方程,其构成规律是通过阶数为 r0∈[0,2]的奇异算子 T 得到的。对于 r0∈(0,1],我们证明了在 s∈[1,1r0)的 Gevrey 空间 Gs 中的好摆性;而对于 r0∈[1,2]和 T 的进一步条件,我们证明了在合适 s 的 Gs 中的不好摆性。然后,我们将这些困难性/良好性结果应用于几个特定的非扩散有源标量方程,包括磁地转恒方程、不可压缩多孔介质方程和奇异不可压缩多孔介质方程。
Ill/well-posedness of non-diffusive active scalar equations with physical applications
We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator T that is singular of order . For we prove well-posedness in Gevrey spaces with , while for and further conditions on T we prove ill-posedness in for suitable s. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics