具有物理应用价值的非扩散有源标量方程的错/好摆性

IF 2.4 2区 数学 Q1 MATHEMATICS
Susan Friedlander , Anthony Suen , Fei Wang
{"title":"具有物理应用价值的非扩散有源标量方程的错/好摆性","authors":"Susan Friedlander ,&nbsp;Anthony Suen ,&nbsp;Fei Wang","doi":"10.1016/j.jde.2024.08.062","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator <strong>T</strong> that is singular of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. For <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we prove well-posedness in Gevrey spaces <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>)</mo></math></span>, while for <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and further conditions on <strong>T</strong> we prove ill-posedness in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for suitable <em>s</em>. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ill/well-posedness of non-diffusive active scalar equations with physical applications\",\"authors\":\"Susan Friedlander ,&nbsp;Anthony Suen ,&nbsp;Fei Wang\",\"doi\":\"10.1016/j.jde.2024.08.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator <strong>T</strong> that is singular of order <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>. For <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we prove well-posedness in Gevrey spaces <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> with <span><math><mi>s</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfrac><mo>)</mo></math></span>, while for <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span> and further conditions on <strong>T</strong> we prove ill-posedness in <span><math><msup><mrow><mi>G</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> for suitable <em>s</em>. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005527\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一类非扩散有源标量方程,其构成规律是通过阶数为 r0∈[0,2]的奇异算子 T 得到的。对于 r0∈(0,1],我们证明了在 s∈[1,1r0)的 Gevrey 空间 Gs 中的好摆性;而对于 r0∈[1,2]和 T 的进一步条件,我们证明了在合适 s 的 Gs 中的不好摆性。然后,我们将这些困难性/良好性结果应用于几个特定的非扩散有源标量方程,包括磁地转恒方程、不可压缩多孔介质方程和奇异不可压缩多孔介质方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ill/well-posedness of non-diffusive active scalar equations with physical applications

We consider a general class of non-diffusive active scalar equations with constitutive laws obtained via an operator T that is singular of order r0[0,2]. For r0(0,1] we prove well-posedness in Gevrey spaces Gs with s[1,1r0), while for r0[1,2] and further conditions on T we prove ill-posedness in Gs for suitable s. We then apply the ill/well-posedness results to several specific non-diffusive active scalar equations including the magnetogeostrophic equation, the incompressible porous media equation and the singular incompressible porous media equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信