烧饼图的广义 4 连接性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jing Wang , Jiang Wu , Zhangdong Ouyang , Yuanqiu Huang
{"title":"烧饼图的广义 4 连接性","authors":"Jing Wang ,&nbsp;Jiang Wu ,&nbsp;Zhangdong Ouyang ,&nbsp;Yuanqiu Huang","doi":"10.1016/j.dam.2024.08.019","DOIUrl":null,"url":null,"abstract":"<div><p>The generalized <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of internally disjoint <span><math><mi>S</mi></math></span>-trees for any <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span>. The generalized <span><math><mi>k</mi></math></span>-connectivity is a natural extension of the classical connectivity and plays a key role in applications related to the modern interconnection networks. An <span><math><mi>n</mi></math></span>-dimensional burnt pancake graph <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a Cayley graph which possesses many desirable properties. In this paper, we try to evaluate the reliability of <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by investigating its generalized 4-connectivity. By introducing the definition of inclusive tree and by studying structural properties of <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, we show that <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mrow><mo>(</mo><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, that is, for any four vertices in <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, there exist (<span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>) internally disjoint trees connecting them in <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 93-114"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generalized 4-connectivity of burnt pancake graphs\",\"authors\":\"Jing Wang ,&nbsp;Jiang Wu ,&nbsp;Zhangdong Ouyang ,&nbsp;Yuanqiu Huang\",\"doi\":\"10.1016/j.dam.2024.08.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generalized <span><math><mi>k</mi></math></span>-connectivity of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum number of internally disjoint <span><math><mi>S</mi></math></span>-trees for any <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>S</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span>. The generalized <span><math><mi>k</mi></math></span>-connectivity is a natural extension of the classical connectivity and plays a key role in applications related to the modern interconnection networks. An <span><math><mi>n</mi></math></span>-dimensional burnt pancake graph <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> is a Cayley graph which possesses many desirable properties. In this paper, we try to evaluate the reliability of <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> by investigating its generalized 4-connectivity. By introducing the definition of inclusive tree and by studying structural properties of <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, we show that <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mrow><mo>(</mo><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, that is, for any four vertices in <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>, there exist (<span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>) internally disjoint trees connecting them in <span><math><mrow><mi>B</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 93-114\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003779\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003779","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的广义 k 连接性(用 κk(G)表示)是任意 S⊆V(G)且 |S|=k 时内部不相交 S 树的最小数目。广义 k 连接性是经典连接性的自然扩展,在与现代互连网络有关的应用中发挥着关键作用。n 维烧饼图 BPn 是一种 Cayley 图,它具有许多理想的特性。本文试图通过研究 BPn 的广义 4 连接性来评估其可靠性。通过引入包容树的定义和研究 BPn 的结构特性,我们证明了在 n≥2 时,κ4(BPn)=n-1,也就是说,对于 BPn 中的任意四个顶点,BPn 中存在 (n-1) 棵内部不相交的树将它们连接起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The generalized 4-connectivity of burnt pancake graphs

The generalized k-connectivity of a graph G, denoted by κk(G), is the minimum number of internally disjoint S-trees for any SV(G) and |S|=k. The generalized k-connectivity is a natural extension of the classical connectivity and plays a key role in applications related to the modern interconnection networks. An n-dimensional burnt pancake graph BPn is a Cayley graph which possesses many desirable properties. In this paper, we try to evaluate the reliability of BPn by investigating its generalized 4-connectivity. By introducing the definition of inclusive tree and by studying structural properties of BPn, we show that κ4(BPn)=n1 for n2, that is, for any four vertices in BPn, there exist (n1) internally disjoint trees connecting them in BPn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信