关于图中 {K2,C2i+1:i≥1} 因子的一些结果

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Xiaoyun Lv , Jianxi Li , Shou-Jun Xu
{"title":"关于图中 {K2,C2i+1:i≥1} 因子的一些结果","authors":"Xiaoyun Lv ,&nbsp;Jianxi Li ,&nbsp;Shou-Jun Xu","doi":"10.1016/j.dam.2024.08.021","DOIUrl":null,"url":null,"abstract":"<div><p>An <span><math><mrow><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mo>…</mo><mo>}</mo></mrow></math></span>-factor of a graph <span><math><mi>G</mi></math></span> is defined to be a spanning subgraph of <span><math><mi>G</mi></math></span> such that each component of which is isomorphic to one of <span><math><mrow><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mo>…</mo><mo>}</mo></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the diagonal matrix of vertex degrees of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the adjacency matrix of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span>. In this paper, we explore the connections between the eigenvalues and the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph. We derive a tight sufficient condition involving the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius to ensure the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph, which generalizes the result on <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span> obtained by Chen, Lv and Li <span><span>[8]</span></span>. Moreover, we present a tight distance signless Laplacian spectral radius condition for the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 81-92"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on {K2,C2i+1:i≥1}-factor in a graph\",\"authors\":\"Xiaoyun Lv ,&nbsp;Jianxi Li ,&nbsp;Shou-Jun Xu\",\"doi\":\"10.1016/j.dam.2024.08.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An <span><math><mrow><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mo>…</mo><mo>}</mo></mrow></math></span>-factor of a graph <span><math><mi>G</mi></math></span> is defined to be a spanning subgraph of <span><math><mi>G</mi></math></span> such that each component of which is isomorphic to one of <span><math><mrow><mo>{</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>,</mo><mo>…</mo><mo>}</mo></mrow></math></span>. Let <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the diagonal matrix of vertex degrees of <span><math><mi>G</mi></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the adjacency matrix of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius of <span><math><mi>G</mi></math></span>. In this paper, we explore the connections between the eigenvalues and the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph. We derive a tight sufficient condition involving the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-spectral radius to ensure the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph, which generalizes the result on <span><math><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></math></span> obtained by Chen, Lv and Li <span><span>[8]</span></span>. Moreover, we present a tight distance signless Laplacian spectral radius condition for the existence of a <span><math><mrow><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>:</mo><mi>i</mi><mo>≥</mo><mn>1</mn><mo>}</mo></mrow></math></span>-factor in a graph.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 81-92\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003792\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003792","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的{A,B,C,...}因子定义为 G 的跨子图,其每个分量都与{A,B,C,...}中的一个分量同构。让 Aα(G)=αD(G)+(1-α)A(G),其中 D(G) 表示 G 的顶点度对角矩阵,A(G) 表示 G 的邻接矩阵。Aα(G) 的最大特征值称为 G 的 Aα 光谱半径。我们推导了一个涉及 Aα 谱半径的严密充分条件,以确保图中存在 {K2,C2i+1:i≥1}因子,这概括了 Chen、Lv 和 Li [8] 所得到的关于 α=0 的结果。此外,我们还提出了图中存在{K2,C2i+1:i≥1}因子的紧距无符号拉普拉斯谱半径条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on {K2,C2i+1:i≥1}-factor in a graph

An {A,B,C,}-factor of a graph G is defined to be a spanning subgraph of G such that each component of which is isomorphic to one of {A,B,C,}. Let Aα(G)=αD(G)+(1α)A(G), where D(G) denotes the diagonal matrix of vertex degrees of G and A(G) denotes the adjacency matrix of G. The largest eigenvalue of Aα(G) is called the Aα-spectral radius of G. In this paper, we explore the connections between the eigenvalues and the existence of a {K2,C2i+1:i1}-factor in a graph. We derive a tight sufficient condition involving the Aα-spectral radius to ensure the existence of a {K2,C2i+1:i1}-factor in a graph, which generalizes the result on α=0 obtained by Chen, Lv and Li [8]. Moreover, we present a tight distance signless Laplacian spectral radius condition for the existence of a {K2,C2i+1:i1}-factor in a graph.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信