{"title":"用于监测环境中二氧化氮气体的可穿戴光电传感器","authors":"Devinder Madhwal , Vivek Kumar , Prashant Shukla , Jitender Kumar , Nitin Bhardwaj , V.K. Jain","doi":"10.1016/j.sna.2024.115870","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental monitoring for detection of harmful pollutants is a challenge in today’s world. Development of wearable sensors with cost-effectiveness and practicality, while using accessible electronic components can be a solution to this challenge. In the present work ultraviolet light emitting diodes (UV-LEDs) and a Light Dependent Resistor (LDR) pair with carefully designed programmable circuitry is used to detect Nitrogen Dioxide (NO<sub>2</sub>) in the environment. The sensor is battery operated and rechargeable, making it convenient and eco-friendly. The sensor developed is miniaturized and wearable in nature for the detection of analyte gas in the environment. The sensor is stable and inexpensive as compared to the existing NO<sub>2</sub> sensors available, which are electro-chemical, or oxide based. The sensor system is sensitive and selective to its exposure to NO<sub>2</sub> gas and has no interference with typical environmental attributes such as humidity and temperature, which is a common challenge in gas detection technologies. The principle of gas detection is absorption based, light falling on the detector absorbed by the test gas present in the environment, thus changing the detector resistance. Absorption-based gas detection is indigenously simple but highly effective technique. This method not only ensures good sensitivity but enhances the selectivity of the electro-optical sensor towards the test gas preventing false triggering in the presence of other interfering gases.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115870"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable electro-optical sensor for monitoring of nitrogen dioxide gas in environment\",\"authors\":\"Devinder Madhwal , Vivek Kumar , Prashant Shukla , Jitender Kumar , Nitin Bhardwaj , V.K. Jain\",\"doi\":\"10.1016/j.sna.2024.115870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmental monitoring for detection of harmful pollutants is a challenge in today’s world. Development of wearable sensors with cost-effectiveness and practicality, while using accessible electronic components can be a solution to this challenge. In the present work ultraviolet light emitting diodes (UV-LEDs) and a Light Dependent Resistor (LDR) pair with carefully designed programmable circuitry is used to detect Nitrogen Dioxide (NO<sub>2</sub>) in the environment. The sensor is battery operated and rechargeable, making it convenient and eco-friendly. The sensor developed is miniaturized and wearable in nature for the detection of analyte gas in the environment. The sensor is stable and inexpensive as compared to the existing NO<sub>2</sub> sensors available, which are electro-chemical, or oxide based. The sensor system is sensitive and selective to its exposure to NO<sub>2</sub> gas and has no interference with typical environmental attributes such as humidity and temperature, which is a common challenge in gas detection technologies. The principle of gas detection is absorption based, light falling on the detector absorbed by the test gas present in the environment, thus changing the detector resistance. Absorption-based gas detection is indigenously simple but highly effective technique. This method not only ensures good sensitivity but enhances the selectivity of the electro-optical sensor towards the test gas preventing false triggering in the presence of other interfering gases.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"379 \",\"pages\":\"Article 115870\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008641\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008641","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Wearable electro-optical sensor for monitoring of nitrogen dioxide gas in environment
Environmental monitoring for detection of harmful pollutants is a challenge in today’s world. Development of wearable sensors with cost-effectiveness and practicality, while using accessible electronic components can be a solution to this challenge. In the present work ultraviolet light emitting diodes (UV-LEDs) and a Light Dependent Resistor (LDR) pair with carefully designed programmable circuitry is used to detect Nitrogen Dioxide (NO2) in the environment. The sensor is battery operated and rechargeable, making it convenient and eco-friendly. The sensor developed is miniaturized and wearable in nature for the detection of analyte gas in the environment. The sensor is stable and inexpensive as compared to the existing NO2 sensors available, which are electro-chemical, or oxide based. The sensor system is sensitive and selective to its exposure to NO2 gas and has no interference with typical environmental attributes such as humidity and temperature, which is a common challenge in gas detection technologies. The principle of gas detection is absorption based, light falling on the detector absorbed by the test gas present in the environment, thus changing the detector resistance. Absorption-based gas detection is indigenously simple but highly effective technique. This method not only ensures good sensitivity but enhances the selectivity of the electro-optical sensor towards the test gas preventing false triggering in the presence of other interfering gases.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...