{"title":"准传递 K∞-minor 自由图","authors":"Matthias Hamann","doi":"10.1016/j.ejc.2024.104056","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every locally finite quasi-transitive graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104056"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001410/pdfft?md5=363aad4468d615e2be63ead62bf9c355&pid=1-s2.0-S0195669824001410-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasi-transitive K∞-minor free graphs\",\"authors\":\"Matthias Hamann\",\"doi\":\"10.1016/j.ejc.2024.104056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every locally finite quasi-transitive graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"124 \",\"pages\":\"Article 104056\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001410/pdfft?md5=363aad4468d615e2be63ead62bf9c355&pid=1-s2.0-S0195669824001410-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001410\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove that every locally finite quasi-transitive graph that does not contain as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.