准传递 K∞-minor 自由图

IF 1 3区 数学 Q1 MATHEMATICS
Matthias Hamann
{"title":"准传递 K∞-minor 自由图","authors":"Matthias Hamann","doi":"10.1016/j.ejc.2024.104056","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that every locally finite quasi-transitive graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"124 ","pages":"Article 104056"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001410/pdfft?md5=363aad4468d615e2be63ead62bf9c355&pid=1-s2.0-S0195669824001410-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quasi-transitive K∞-minor free graphs\",\"authors\":\"Matthias Hamann\",\"doi\":\"10.1016/j.ejc.2024.104056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that every locally finite quasi-transitive graph that does not contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"124 \",\"pages\":\"Article 104056\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001410/pdfft?md5=363aad4468d615e2be63ead62bf9c355&pid=1-s2.0-S0195669824001410-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001410\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个不包含 K∞ 作为次要部分的局部有限准传递图都与某个平面准传递局部有限图准等距。这解决了 Esperet 和 Giocanti 的一个问题,并改进了他们最近的结果,即这类图与某些有界平面图准等距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-transitive K∞-minor free graphs

We prove that every locally finite quasi-transitive graph that does not contain K as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信