Ugochi Uzoamaka Egbeagu , Yue Zhang , Yuanhang Wang , Ayodeji Bello , Liting Deng , Yu Sun , Yue Han , Liyan Zhao , Shuai Shi , Huajing Liu , Xiuhong Xu
{"title":"大豆农业生态系统中功能性反硝化细菌对新型配方有机添加剂的不同反应透视","authors":"Ugochi Uzoamaka Egbeagu , Yue Zhang , Yuanhang Wang , Ayodeji Bello , Liting Deng , Yu Sun , Yue Han , Liyan Zhao , Shuai Shi , Huajing Liu , Xiuhong Xu","doi":"10.1016/j.rhisph.2024.100954","DOIUrl":null,"url":null,"abstract":"<div><p>Fertilizer application has been known to cause substantial changes in the microbial composition of agricultural soil. Therefore, there is a need for more fertilizer management practices that will improve nitrogen (N) content, which is the key restrictive factor for microbial growth. To elucidate the characteristics of these fertilizers in the soil, samples were collected from a soybean field of control (S0) with no addition of organic amendment, biochar made from rice straw (S1), compost made from cattle manure and maize straw at a ratio of 5:1 (S2), composting S2 + 10 % S1 (S3), and mixture of S2 + 10 % S1 without composting (S4). The soil functional denitrifiers (<em>nirS</em> and <em>nirK</em>) were unravelled using Illumina high-throughput sequencing. It was observed that S3 (66.56 %) and S4 (61.14 %) increased the NO<sub>3</sub><sup>−</sup>-N, while S2 increased the total Kjeldahl nitrogen (TKN) by 15.79 % compared to S0. OTU847_<sub><em>norank_p_environmental_samples</em></sub> in <em>nirS</em> and OTU112_<sub><em>unclassified_f_Bradyrhizobiaceae</em></sub> in <em>nirK</em> were the most abundant genera in S1-S4 while S2 and S3 had the highest unique OTUs in <em>nirK</em> and <em>nirS</em> communities, respectively. The canonical correspondence analysis (CCA) showed that NO<sub>2</sub><sup>−</sup>-N and nitrate reductase (NIR) enzyme-shaped <em>nirS</em> and <em>nirK</em> denitrifiers. Also, from the structural equation model (SEM), TKN showed a higher negative significant effect on <em>nirK</em> alpha and beta diversities, while S4 showed the lowest positive network in <em>nirS</em> and <em>nirK</em>- denitrifiers. Meanwhile, <em>Bradyrhizobium</em> was observed as a common genus in the multivariate co-occurrence network in <em>nirS-</em> and <em>nirK</em>-type denitrifiers. This study provides the theoretical basis and technical support that single and combined fertilizers could influence <em>nirS</em> and <em>nirK</em> denitrifiers in soybean-grown soil.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the differential response of functional denitrifiers to novel formulated organic amendments in soybean agroecosystem\",\"authors\":\"Ugochi Uzoamaka Egbeagu , Yue Zhang , Yuanhang Wang , Ayodeji Bello , Liting Deng , Yu Sun , Yue Han , Liyan Zhao , Shuai Shi , Huajing Liu , Xiuhong Xu\",\"doi\":\"10.1016/j.rhisph.2024.100954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fertilizer application has been known to cause substantial changes in the microbial composition of agricultural soil. Therefore, there is a need for more fertilizer management practices that will improve nitrogen (N) content, which is the key restrictive factor for microbial growth. To elucidate the characteristics of these fertilizers in the soil, samples were collected from a soybean field of control (S0) with no addition of organic amendment, biochar made from rice straw (S1), compost made from cattle manure and maize straw at a ratio of 5:1 (S2), composting S2 + 10 % S1 (S3), and mixture of S2 + 10 % S1 without composting (S4). The soil functional denitrifiers (<em>nirS</em> and <em>nirK</em>) were unravelled using Illumina high-throughput sequencing. It was observed that S3 (66.56 %) and S4 (61.14 %) increased the NO<sub>3</sub><sup>−</sup>-N, while S2 increased the total Kjeldahl nitrogen (TKN) by 15.79 % compared to S0. OTU847_<sub><em>norank_p_environmental_samples</em></sub> in <em>nirS</em> and OTU112_<sub><em>unclassified_f_Bradyrhizobiaceae</em></sub> in <em>nirK</em> were the most abundant genera in S1-S4 while S2 and S3 had the highest unique OTUs in <em>nirK</em> and <em>nirS</em> communities, respectively. The canonical correspondence analysis (CCA) showed that NO<sub>2</sub><sup>−</sup>-N and nitrate reductase (NIR) enzyme-shaped <em>nirS</em> and <em>nirK</em> denitrifiers. Also, from the structural equation model (SEM), TKN showed a higher negative significant effect on <em>nirK</em> alpha and beta diversities, while S4 showed the lowest positive network in <em>nirS</em> and <em>nirK</em>- denitrifiers. Meanwhile, <em>Bradyrhizobium</em> was observed as a common genus in the multivariate co-occurrence network in <em>nirS-</em> and <em>nirK</em>-type denitrifiers. This study provides the theoretical basis and technical support that single and combined fertilizers could influence <em>nirS</em> and <em>nirK</em> denitrifiers in soybean-grown soil.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452219824001095\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824001095","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Insight into the differential response of functional denitrifiers to novel formulated organic amendments in soybean agroecosystem
Fertilizer application has been known to cause substantial changes in the microbial composition of agricultural soil. Therefore, there is a need for more fertilizer management practices that will improve nitrogen (N) content, which is the key restrictive factor for microbial growth. To elucidate the characteristics of these fertilizers in the soil, samples were collected from a soybean field of control (S0) with no addition of organic amendment, biochar made from rice straw (S1), compost made from cattle manure and maize straw at a ratio of 5:1 (S2), composting S2 + 10 % S1 (S3), and mixture of S2 + 10 % S1 without composting (S4). The soil functional denitrifiers (nirS and nirK) were unravelled using Illumina high-throughput sequencing. It was observed that S3 (66.56 %) and S4 (61.14 %) increased the NO3−-N, while S2 increased the total Kjeldahl nitrogen (TKN) by 15.79 % compared to S0. OTU847_norank_p_environmental_samples in nirS and OTU112_unclassified_f_Bradyrhizobiaceae in nirK were the most abundant genera in S1-S4 while S2 and S3 had the highest unique OTUs in nirK and nirS communities, respectively. The canonical correspondence analysis (CCA) showed that NO2−-N and nitrate reductase (NIR) enzyme-shaped nirS and nirK denitrifiers. Also, from the structural equation model (SEM), TKN showed a higher negative significant effect on nirK alpha and beta diversities, while S4 showed the lowest positive network in nirS and nirK- denitrifiers. Meanwhile, Bradyrhizobium was observed as a common genus in the multivariate co-occurrence network in nirS- and nirK-type denitrifiers. This study provides the theoretical basis and technical support that single and combined fertilizers could influence nirS and nirK denitrifiers in soybean-grown soil.