双曲 Keller-Segel 方程的全局好摆性、炸毁现象和不好摆性

IF 2.4 2区 数学 Q1 MATHEMATICS
Zhiying Meng , Yao Nie , Weikui Ye , Zhaoyang Yin
{"title":"双曲 Keller-Segel 方程的全局好摆性、炸毁现象和不好摆性","authors":"Zhiying Meng ,&nbsp;Yao Nie ,&nbsp;Weikui Ye ,&nbsp;Zhaoyang Yin","doi":"10.1016/j.jde.2024.08.074","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the Cauchy problem of the hyperbolic Keller-Segel equations in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on torus with <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>. Firstly, developing the dissipative mechanism through translation, we establish the global well-posedness in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> (<span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>) with initial data near some equilibrium state. Secondly, by capturing the feature of the preservation of zero directional derivative, we give a class of initial date that lead to finite time blow-up. It's worth noting that our method of proving blow-up phenomenon does not require any conservation law. Finally, the characterization of this blow-up motivates us to show the ill-posedness of this system in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in the sense of “norm inflation”, which implies that our ill-posedness result for this system is sharp on one dimensional torus.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness, blow-up phenomenon and ill-posedness for the hyperbolic Keller-Segel equations\",\"authors\":\"Zhiying Meng ,&nbsp;Yao Nie ,&nbsp;Weikui Ye ,&nbsp;Zhaoyang Yin\",\"doi\":\"10.1016/j.jde.2024.08.074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the Cauchy problem of the hyperbolic Keller-Segel equations in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on torus with <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span>. Firstly, developing the dissipative mechanism through translation, we establish the global well-posedness in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> (<span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>) with initial data near some equilibrium state. Secondly, by capturing the feature of the preservation of zero directional derivative, we give a class of initial date that lead to finite time blow-up. It's worth noting that our method of proving blow-up phenomenon does not require any conservation law. Finally, the characterization of this blow-up motivates us to show the ill-posedness of this system in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> in the sense of “norm inflation”, which implies that our ill-posedness result for this system is sharp on one dimensional torus.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005631\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005631","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了环上双曲 Keller-Segel 方程在 Hs(Td) 中的 Cauchy 问题(d≥1)。首先,通过平移发展耗散机制,我们建立了初始数据在某个平衡态附近时在 Hs(Td) (s>1+d2) 中的全局好求性。其次,通过捕捉零方向导数的保留特征,我们给出了一类导致有限时间炸毁的初始日期。值得注意的是,我们证明炸毁现象的方法不需要任何守恒定律。最后,这种炸毁现象的特征促使我们在 "规范膨胀 "的意义上证明了该系统在 H32(Td) 中的不合理问题,这意味着我们对该系统的不合理结果在一维环上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness, blow-up phenomenon and ill-posedness for the hyperbolic Keller-Segel equations

In this paper, we consider the Cauchy problem of the hyperbolic Keller-Segel equations in Hs(Td) on torus with d1. Firstly, developing the dissipative mechanism through translation, we establish the global well-posedness in Hs(Td) (s>1+d2) with initial data near some equilibrium state. Secondly, by capturing the feature of the preservation of zero directional derivative, we give a class of initial date that lead to finite time blow-up. It's worth noting that our method of proving blow-up phenomenon does not require any conservation law. Finally, the characterization of this blow-up motivates us to show the ill-posedness of this system in H32(Td) in the sense of “norm inflation”, which implies that our ill-posedness result for this system is sharp on one dimensional torus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信