非局部 KPP 方程的动力学:新自由边界条件的影响

IF 2.4 2区 数学 Q1 MATHEMATICS
Xin Long , Yihong Du , Wenjie Ni , Taishan Yi
{"title":"非局部 KPP 方程的动力学:新自由边界条件的影响","authors":"Xin Long ,&nbsp;Yihong Du ,&nbsp;Wenjie Ni ,&nbsp;Taishan Yi","doi":"10.1016/j.jde.2024.08.058","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in <span><span>[9]</span></span>, which describes the spreading of a species with density <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and population range <span><math><mo>[</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>⊂</mo><mi>R</mi></math></span>. The existing free boundary condition can be written as<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>x</mi></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mi>J</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi></math></span>, and <em>J</em> is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> by a general nonnegative locally Lipschitz continuous function <em>W</em> with <span><math><mi>W</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>, independent of <em>J</em>. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in <span><span>[20]</span></span>. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that <em>J</em> is thin-tailed and <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>=</mo><mo>∞</mo></math></span>, where new propagation phenomena appear.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the nonlocal KPP equation: Effects of a new free boundary condition\",\"authors\":\"Xin Long ,&nbsp;Yihong Du ,&nbsp;Wenjie Ni ,&nbsp;Taishan Yi\",\"doi\":\"10.1016/j.jde.2024.08.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in <span><span>[9]</span></span>, which describes the spreading of a species with density <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and population range <span><math><mo>[</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>⊂</mo><mi>R</mi></math></span>. The existing free boundary condition can be written as<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>x</mi></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mi>J</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi></math></span>, and <em>J</em> is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> by a general nonnegative locally Lipschitz continuous function <em>W</em> with <span><math><mi>W</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>, independent of <em>J</em>. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in <span><span>[20]</span></span>. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that <em>J</em> is thin-tailed and <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>=</mo><mo>∞</mo></math></span>, where new propagation phenomena appear.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005473\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了新的自由边界条件对 [9] 中考虑的非局部扩散模型传播动力学的影响,该模型描述了密度为 u(t,x)、种群范围为 [g(t),h(t)]⊂R 的物种扩散。现有的自由边界条件可以写成{h′(t)=μ∫g(t)h(t)u(t,x)WJ(h(t)-x)dx,g′(t)=-μ∫g(t)h(t)u(t、x)WJ(x-g(t))dx,其中 WJ(x)=∫x+∞J(y)dy, J 是模型中非局部扩散算子的核函数。在新的自由边界条件中,我们用一个一般的非负局部 Lipschitz 连续函数 W 代替 WJ,W(0)>0,与 J 无关。这代表了与文献[20]完全不同的假设,即物种范围边界的移动与其扩散策略无关。我们的分析表明,新自由边界条件下的模型动力学与旧模型相似,除了在 J 为细尾且∫0∞W(x)dx=∞的情况下,会出现新的传播现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the nonlocal KPP equation: Effects of a new free boundary condition

In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in [9], which describes the spreading of a species with density u(t,x) and population range [g(t),h(t)]R. The existing free boundary condition can be written as{h(t)=μg(t)h(t)u(t,x)WJ(h(t)x)dx,g(t)=μg(t)h(t)u(t,x)WJ(xg(t))dx, where WJ(x)=x+J(y)dy, and J is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace WJ by a general nonnegative locally Lipschitz continuous function W with W(0)>0, independent of J. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in [20]. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that J is thin-tailed and 0W(x)dx=, where new propagation phenomena appear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信