{"title":"非局部 KPP 方程的动力学:新自由边界条件的影响","authors":"Xin Long , Yihong Du , Wenjie Ni , Taishan Yi","doi":"10.1016/j.jde.2024.08.058","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in <span><span>[9]</span></span>, which describes the spreading of a species with density <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and population range <span><math><mo>[</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>⊂</mo><mi>R</mi></math></span>. The existing free boundary condition can be written as<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>x</mi></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mi>J</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi></math></span>, and <em>J</em> is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> by a general nonnegative locally Lipschitz continuous function <em>W</em> with <span><math><mi>W</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span>, independent of <em>J</em>. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in <span><span>[20]</span></span>. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that <em>J</em> is thin-tailed and <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>=</mo><mo>∞</mo></math></span>, where new propagation phenomena appear.</p></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the nonlocal KPP equation: Effects of a new free boundary condition\",\"authors\":\"Xin Long , Yihong Du , Wenjie Ni , Taishan Yi\",\"doi\":\"10.1016/j.jde.2024.08.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in <span><span>[9]</span></span>, which describes the spreading of a species with density <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></math></span> and population range <span><math><mo>[</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>]</mo><mo>⊂</mo><mi>R</mi></math></span>. The existing free boundary condition can be written as<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mi>h</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>g</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>μ</mi><munderover><mo>∫</mo><mrow><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></munderover><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>x</mi></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><mi>J</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi></math></span>, and <em>J</em> is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> by a general nonnegative locally Lipschitz continuous function <em>W</em> with <span><math><mi>W</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span>, independent of <em>J</em>. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in <span><span>[20]</span></span>. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that <em>J</em> is thin-tailed and <span><math><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>=</mo><mo>∞</mo></math></span>, where new propagation phenomena appear.</p></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624005473\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624005473","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dynamics of the nonlocal KPP equation: Effects of a new free boundary condition
In this paper, we examine the effect of a new free boundary condition on the propagation dynamics of the nonlocal diffusion model considered in [9], which describes the spreading of a species with density and population range . The existing free boundary condition can be written as where , and J is the kernel function of the nonlocal diffusion operator in the model. In the new free boundary condition, we replace by a general nonnegative locally Lipschitz continuous function W with , independent of J. This represents a very different assumption that the movement of the range boundary of the species is independent of its dispersal strategy, as in [20]. Our analysis shows that the dynamics of the model with the new free boundary condition resembles that of the old model except in the case that J is thin-tailed and , where new propagation phenomena appear.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics