{"title":"关于离散对数凹计量的统计距离的说明","authors":"Arnaud Marsiglietti , Puja Pandey","doi":"10.1016/j.spl.2024.110257","DOIUrl":null,"url":null,"abstract":"<div><p>In this note we explore how standard statistical distances are equivalent for discrete log-concave distributions. Distances include total variation distance, Wasserstein distance, and <span><math><mi>f</mi></math></span>-divergences.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002268/pdfft?md5=ffec21730d7f796c86b2e15d17d4c7a6&pid=1-s2.0-S0167715224002268-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on statistical distances for discrete log-concave measures\",\"authors\":\"Arnaud Marsiglietti , Puja Pandey\",\"doi\":\"10.1016/j.spl.2024.110257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this note we explore how standard statistical distances are equivalent for discrete log-concave distributions. Distances include total variation distance, Wasserstein distance, and <span><math><mi>f</mi></math></span>-divergences.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002268/pdfft?md5=ffec21730d7f796c86b2e15d17d4c7a6&pid=1-s2.0-S0167715224002268-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224002268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本论文中,我们将探讨离散对数凹分布的标准统计距离是如何等效的。距离包括总变异距离、瓦瑟斯坦距离和 f 差。
A note on statistical distances for discrete log-concave measures
In this note we explore how standard statistical distances are equivalent for discrete log-concave distributions. Distances include total variation distance, Wasserstein distance, and -divergences.