{"title":"为高性能结构超级电容器设计新型三元过渡金属硫化物电极","authors":"","doi":"10.1016/j.seta.2024.103955","DOIUrl":null,"url":null,"abstract":"<div><p>Structure supercapacitors (SSC) have aroused tremendous interest in building energy storage due to their dual function of electrochemical-mechanical properties. As well known, the low energy storage capacity limits their development. To enhance the energy density of SSC, lots of high-performance structural electrodes were developed. Herein, Mg and S elements were used to regulate the microstructure of the binary metal hydroxide, which could improve the electrode’s electrochemical performance. As we expected, rGO/N<sub>1</sub>C<sub>3</sub>Mg-S<sub>4</sub>′ electrode exhibits high areal capacitance (10.20F/cm<sup>2</sup>), which boosts the electrochemical capacitance of SSC. Our device based on rGO/N<sub>1</sub>C<sub>3</sub>Mg-S<sub>4</sub>′ electrode exhibits a high areal capacitance (179.21 mF/cm<sup>2</sup>) and a high energy density (56 μWh/cm<sup>2</sup>) at 3 mA/cm<sup>2</sup>. More importantly, the electrochemical performance of our device doesn’t change obviously under a certain amount of pressure, demonstrating its good practical application potential in buildings.</p></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a novel ternary transition metal sulfide electrode for high-performance structural supercapacitors\",\"authors\":\"\",\"doi\":\"10.1016/j.seta.2024.103955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Structure supercapacitors (SSC) have aroused tremendous interest in building energy storage due to their dual function of electrochemical-mechanical properties. As well known, the low energy storage capacity limits their development. To enhance the energy density of SSC, lots of high-performance structural electrodes were developed. Herein, Mg and S elements were used to regulate the microstructure of the binary metal hydroxide, which could improve the electrode’s electrochemical performance. As we expected, rGO/N<sub>1</sub>C<sub>3</sub>Mg-S<sub>4</sub>′ electrode exhibits high areal capacitance (10.20F/cm<sup>2</sup>), which boosts the electrochemical capacitance of SSC. Our device based on rGO/N<sub>1</sub>C<sub>3</sub>Mg-S<sub>4</sub>′ electrode exhibits a high areal capacitance (179.21 mF/cm<sup>2</sup>) and a high energy density (56 μWh/cm<sup>2</sup>) at 3 mA/cm<sup>2</sup>. More importantly, the electrochemical performance of our device doesn’t change obviously under a certain amount of pressure, demonstrating its good practical application potential in buildings.</p></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824003515\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824003515","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Designing a novel ternary transition metal sulfide electrode for high-performance structural supercapacitors
Structure supercapacitors (SSC) have aroused tremendous interest in building energy storage due to their dual function of electrochemical-mechanical properties. As well known, the low energy storage capacity limits their development. To enhance the energy density of SSC, lots of high-performance structural electrodes were developed. Herein, Mg and S elements were used to regulate the microstructure of the binary metal hydroxide, which could improve the electrode’s electrochemical performance. As we expected, rGO/N1C3Mg-S4′ electrode exhibits high areal capacitance (10.20F/cm2), which boosts the electrochemical capacitance of SSC. Our device based on rGO/N1C3Mg-S4′ electrode exhibits a high areal capacitance (179.21 mF/cm2) and a high energy density (56 μWh/cm2) at 3 mA/cm2. More importantly, the electrochemical performance of our device doesn’t change obviously under a certain amount of pressure, demonstrating its good practical application potential in buildings.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.