基于残差的后验误差估计,用于基于 E 的时变涡流问题表述

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ivana Šebestová
{"title":"基于残差的后验误差估计,用于基于 E 的时变涡流问题表述","authors":"Ivana Šebestová","doi":"10.1016/j.camwa.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>We consider time-dependent eddy current problem formulated in terms of the electric field that is discretized by Nédélec finite elements in space and by the backward Euler scheme in time. We derive residual-based a posteriori error estimates in the energy norm augmented by temporal jumps in the numerical solution. The estimates are reliable and locally efficient in both time and space.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual-based a posteriori error estimation for E-based formulation of a time-dependent eddy current problem\",\"authors\":\"Ivana Šebestová\",\"doi\":\"10.1016/j.camwa.2024.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider time-dependent eddy current problem formulated in terms of the electric field that is discretized by Nédélec finite elements in space and by the backward Euler scheme in time. We derive residual-based a posteriori error estimates in the energy norm augmented by temporal jumps in the numerical solution. The estimates are reliable and locally efficient in both time and space.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003730\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003730","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了以电场表示的时变涡流问题,该问题在空间上通过内德列克有限元进行离散,在时间上通过后向欧拉方案进行离散。我们推导出了基于残差的后验误差估计值,该误差估计值是在数值解的时间跃迁中增加的能量规范。这些估计值在时间和空间上都是可靠和局部有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual-based a posteriori error estimation for E-based formulation of a time-dependent eddy current problem

We consider time-dependent eddy current problem formulated in terms of the electric field that is discretized by Nédélec finite elements in space and by the backward Euler scheme in time. We derive residual-based a posteriori error estimates in the energy norm augmented by temporal jumps in the numerical solution. The estimates are reliable and locally efficient in both time and space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信